11 research outputs found

    Improvements to the Langley HZE abrasion model

    Get PDF
    Improvements to a previously developed high charge energy abrasion model are made by incorporating more realistic values for the constituent Fermi momentum and nucleon root-mean-square charge radius. The theoretical predictions for neon projectiles at 2.1 GeV/nucleon colliding with carbon and molybdenum targets are in excellent agreement with recent experiment results

    Phenomenological optical potential analysis of proton-carbon elastic scattering at 200 MeV

    Get PDF
    Differential cross sections for 200 MeV protons elastically scattered from C-12 were analyzed utilizing a local, complex, spin-dependent optical potential with a harmonic well radial dependence. Analyses were performed using the WKB and eikonal approximations. For the latter, first-order corrections to he phase shifts were incorporated to account for the spin-orbit contribution. Large disagreement between theory and experiment was observed when the usual Thomas form for the spin-orbit potential was utilized. Substantial improvement was obtained by allowing the parameters in the central and spin-orbit potential terms to vary independently

    Heavy-ion total and absorption cross sections above 25 MeV/nucleon

    Get PDF
    Within the context of a double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to generate tables of heavy ion total and absorption cross sections at incident kinetic energies above 25 MeV/nucleon for use in cosmic ray high-energy heavy ion transport and shielding studies. Comparisons of predictions with nucleus-nucleus experimental data show excellent agreement except at the lowest energies, where the eikonal approximation may not be completely valid. Even at the lowest energies, however, agreement is typically within 20 percent

    Neon transport in selected organic composites

    Get PDF
    An energy-dependent, perturbation expansion solution for heavy-ion transport in one dimension was used to calculate the dose from Ne-20 beams at incident kinetic energies of 350, 670, and 2000 MeV/amu onto selected organic composites. Transport coefficients, applicable to arbitrary ion beams over a broad range of energies, are presented. Polyethylene and Kapton were tested as constituents of multilayered shielding for spacecraft and astronauts

    Nucleon and deuteron scattering cross sections from 25 MV/Nucleon to 22.5 GeV/Nucleon

    Get PDF
    Within the context of a double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to generate tables of nucleon and deuteron total and absorption cross sections at kinetic energies between 25 MeV/nucleon and 22.5 GeV/nucleon for use in cosmic-ray transport and shielding studies. Comparisons of predictions for nucleon-nucleus and deuteron-nucleus absorption and total cross sections with experimental data are also made

    Analytic optical potentials for nucleon-nucleus nucleus-nucleus collisions involving light and medium nuclei

    Get PDF
    Utilizing an optical model potential approximation to the exact nucleus-nucleus multiple-scattering series, optical potentials for nucleon-nucleus and nucleus-nucleus collisions are analytically derived. These expressions are applicable to light and medium cosmic ray nuclei as their single-particle density distributions are analytically determined, without approximation, from their actual harmonic well charge density distributions. Pauli correlation effects are included through the use of a simple Gaussian function to replace the usual expression obtained in the infinite nuclear matter approximation

    An abrasion-ablation model description of galactic heavy-ion fragmentation

    Get PDF
    The fragmentation of high-energy galactic heavy ions by nuclear interactions with arbitrary target nuclei is described within the context of a simple abrasion-ablation fragmentation model. The abrasion part of the theory utilizes a quantum-mechanical formalism based upon an optical model potential approximation to the exact nucleus-nucleus multiple-scattering series. Nuclear charge distributions of the excited prefragments are calculated using either a hypergeometric distribution or a method based upon the zero-point oscillations of the giant dipole resonance. The excitation energy of the prefragment is estimated from the geometric clean-cut abrasion-ablation model. The decay probabilities for the various particle emission channels, in the ablation stage of the fragmentation, are obtained from the EVAP-4 Monte Carlo computer program. Elemental production cross sections for 1.88-GeV/nucleon iron colliding with carbon, silver, and lead targets are calculated and compared with experimental data and with the predictions from the semiempirical relations of Silberberg and Tsao

    Atmospheric Ionizing Radiation and Human Exposure

    No full text
    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models
    corecore