General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

PHENOMENOLOGICAL OPTICAL POTENTIAL ANALYSIS OF PROTON-CARBON ELASTIC SCATIERING AT 2OD MeV

H. B. Bidasaria and L W. Townsend

June 1982

```
(NASA-TM-84498) PHENOMENOLGGICAL OPTICAL
    N82-30066
POTENTIAL ANALYSIS OF PROTON-CARBON ELASTIC
SCATTERING AT 200 MEV (NASA) 21 p
HC A02/MF AO1 CSCL 20H

National Aeronautics and Space Administration


\section*{Tahle of Contents}
nomenclature ..... ii
SUMMARY ..... 1
INTRODUCTION ..... 2
ANALYTIC METHODS ..... 3
Optical Potential Parameterization ..... 3
Scattering Formalism. ..... 4
Eikonal Phase Shifts. ..... 6
HKB Phase Shifts ..... 7
RESIJLTS ..... 8
CONCLUDING REMARKS ..... 9
REFERENCES ..... 10
TABLES ..... 12
FIGURES ..... 14

\section*{ORIGINAL PAGE IS OF FOOR QUALITY}

\section*{NOMENCLATURE}

\begin{tabular}{|c|c|}
\hline \(v^{ \pm}\) & defined in equation (22) \\
\hline \(U_{C}\) & defined in equation (21) \\
\hline \(V_{c}\) & central potential term, MeV \\
\hline \(V_{s}\) & spin-orbit potential term, MeV \\
\hline \[
v_{e f f}^{ \pm}
\] & defined in equation (23) \\
\hline \(v\) & relative velocity in center of mass system, \(\mathrm{m} / \mathrm{sec}\) \\
\hline \(Z_{T}\) & target nuclear charge number, dimensionless \\
\hline \(\beta\) & defined in equation (11) \\
\hline \(r\) & gamma function of complex argument, dimensionless \\
\hline \(\delta_{L^{ \pm}}{ }^{ \pm}\) & defined in equations (16) and (20) \\
\hline n & defined in equation (13) \\
\hline \(\vec{\sigma}\) & twice the spin angular momentum, dimensionless \\
\hline \(\sigma(\theta)\) & differential cross section, mb per steradian \\
\hline \(\bigcirc\) & scaitering angle, radians \\
\hline X & eikonal phase shift, dimensionless \\
\hline \multicolumn{2}{|l|}{Subscripts:} \\
\hline C & Coulomb \\
\hline cm & center of mass \\
\hline c & central \\
\hline \(s\) & spin-orbit \\
\hline T & target \\
\hline
\end{tabular}

ORIGINAL PAGE IS OF POOR QUALITY

\title{
PHENOMENOLOGICAL OPTICAL POTENTIAL ANALYSIS OF PROTON-CARBON ELASTIC SCATTERING AT 200 MeV
}

\author{
Hari B. Bidasaria \\ 0ld Dominion University \\ Norfclk, Virginia \\ and \\ Lawrence W. Townsend \\ Langley Research Center \\ Hampton, Virginia
}

SUMMARY
Qifferential cross sections for 200 MeV protons elastically scattered from \({ }^{12} \mathrm{C}\) are analyzed utilizing a local, complex, spin-dependent optical potential with a harmonic well radial dependence. Analyses were performed using the WKB and eikonal approximations. For the latter, first-order corrections to the phase shifts were incorporated to account for the spin-orbit contribution. Large disagreement between theory and experiment was observed when the usual Thomas form for the spin-orbit potential was utilized. Substantial improvement was obtained by allowing the parameters in the central and spin-orbit potential terms to vary independently.

\section*{ORIGINAL PAGE IS OF POOR QUALITY}

\section*{INTRODUCTION}

The development of an accurate heavy ion (HZE) transport theory is required to support cosmic ray shielding analyses for future space applications. Transport theory development, in turn, requires a simple, yet accurate, HZE reaction theory as input. for the past several years, such a theory has been under development for incident projectile energies above several hundred MeV/amu (refs. 1-7). At present, no satisfactory theory exists for energies below (approximately) \(200 \mathrm{MeV} / \mathrm{amu}\) where the eikonal (high energy) approximation appears tn become inadequate (refs. 3 and 6). At lower incident kinetic energies, contributions from low order partial waves (orbital angular momentum states) increase appreciably. In addition, the incident ion's trajectory deviates significantly from its initial straight line path such that the eikonal approximation may no longer yield accurate predictions. At these lower energies, a better approximation is the Hentzel-Kramers-Brillouin (WKB) method (ref. 8). This work describes our initial investigation into utilizing this approximation method to analyze elastic scattering. Proton-carbon scattering was chosen for analytic convenience due to its simplicity (elementary rather than composite projectile) and because it is the subject of much current theoretical and experimental interest (refs. 9-11). Additionally, a harmonic well potential parameterization rather than the usual Woods-Saxon form (refs. 9 and 10) was chosen since it more accurately represents the actual carbon nuclear distribution (refs. 7 and 12) and should therefore yield agreement with experimental data for fewer free parameters than the 24 required by the double-koods-Saxon potential analysis of reference 9.

\section*{ORIGINAL PAGE IS \\ OF POOR QUALITY}

\section*{ANALYTIC METHODS}

Optical Potential Parametrization
The optical potential chosen for this analysis consisted of a central, \(V_{C}\), and spin-orbit, \(V_{S}\), contribution (ref. 8)
\[
\begin{equation*}
V(\vec{r})=V_{C}(\vec{r})+\vec{\sigma} \cdot \vec{L} V_{S}(\vec{r}) \tag{1}
\end{equation*}
\]
where \(\vec{\sigma}\) is twice the spin angular momentum, \(\vec{s}\), and \(\vec{i}\) the orbital] angular momentum vector for the incident proton. The scalar product \(\overrightarrow{\boldsymbol{\sigma}} \cdot \boldsymbol{L}\) is
\[
\stackrel{\rightharpoonup}{\sigma} \cdot L=\left\{\begin{array}{c}
L  \tag{2}\\
-(L+1)
\end{array}\right\}, \text {, antiparallel }
\]
where parallel/antiparallel refers to the relative orientation of \(\vec{\sigma}\) with respect to the total angular momentum vector
\[
\begin{equation*}
\vec{J}=\vec{\imath}+(1 / 2) \vec{\sigma} . \tag{3}
\end{equation*}
\]

From reference 13 , the spin-independent central potential for \(p={ }^{12} C\) scattering, using a harmonic well charge distribution for \({ }^{12} C\), is of the form
\[
\begin{equation*}
v_{c}(\vec{r})=A_{0}\left(1+A_{1} r^{2}\right) \exp \left(-A_{2} r^{2}\right) \tag{4}
\end{equation*}
\]
where \(A_{0}\) is complex and \(A_{1}\) and \(A_{2}\) are real. The usual ThomasFermi form for the spin-orhit contribution is (ref. 11)
\[
\begin{equation*}
V_{S}(\vec{r})=\frac{1}{r} \frac{d}{d r} V_{c}(\vec{r}) \tag{5}
\end{equation*}
\]
which can also be parameterized as
\[
\begin{equation*}
v_{s}(\vec{r})=B_{0}\left(1+B_{1} r^{2}\right) \exp \left(-B_{2} r^{2}\right) \tag{6}
\end{equation*}
\]
with \(B_{0}\) complex and \(B_{1}\) and \(B_{2}\) real. Using equations (4) and (5) it \(c\) an be shown that the \(B_{i}(i=0-2)\) are functions of the \(A_{i}\) and that \(B_{2}=A_{2}\). In this work, these parameters are treated as completely free. Hence, we find that the restrictions imposed on the \(\mathrm{Bi}_{\mathrm{i}}\) by equation (5) do not hold and in particular, \(B_{2} \neq A_{2}\). (see RESULTS).

\section*{ORIGINAL PAGE IS \\ OF POOR QUALITY}

\section*{Scattering Formalism}

From reference 8, the scattering amplitude is
\[
\begin{equation*}
f(\theta)=f(\theta)+\stackrel{\rightharpoonup}{\sigma} \cdot \hat{n} \underline{g}(\theta) \tag{7}
\end{equation*}
\]
where \(\hat{n}\) is the unit vector normal to the scattering plane and
\[
\begin{align*}
f(\theta)= & f_{c}(\theta)+(2 i k)^{-1} \sum_{L=0}^{\infty} \exp \left(2 i n_{L}\right)  \tag{8}\\
& x\left\{(L+1)\left[\exp \left(2 i \delta_{L}^{+}\right)-1\right]\right. \\
& \left.+L\left[\exp \left(2 i \delta_{L}^{-}\right)-1\right]\right\} P_{L}(\cos \theta)
\end{align*}
\]
\[
\begin{equation*}
g(\theta)=(2 k)^{-1} \sum_{L=1}^{\infty}\left[\exp \left(2 i \delta_{L}^{+}\right)-\exp \left(2 i \delta_{L}^{-}\right)\right] P_{L}^{1}(\cos \theta) \tag{9}
\end{equation*}
\]
where \(f_{C}(\theta)\), the coulomb scatteering amplitude is
\[
\begin{equation*}
{ }^{f} C(\theta)=-\left[\beta / 2 k \sin ^{2}(\theta / 2)\right] \exp \left[2 i n_{0}-i \beta \ln \sin ^{2}(\theta / 2)\right] \tag{10}
\end{equation*}
\]

In equations (8) through (10) above, \(k\) is the center of mass wave number, the \(\delta L\) are the phase shifts (to be determined in the following sections), the \(P_{L}(\cos \theta)\) are Legendre polymomials, and. \(P_{L}{ }^{1}(\cos \theta)\) are associated Legendre functions of the first kind (see ref. 14). Additionally, for the coulomb contrihution, we use
\[
\begin{align*}
& B=Z_{T} e^{2} / h v  \tag{11}\\
& \eta_{0}=\operatorname{Arg} \Gamma(1+i \beta) \tag{12}
\end{align*}
\]
and
\[
\begin{equation*}
n_{L}=n_{L-1}+\tan ^{-1}(\beta / L) \tag{13}
\end{equation*}
\]
where \(v\) is the relativistic relative velocity between the projectile and target.

The elastic differential cross section is then given by
\[
\begin{equation*}
\frac{d \sigma}{d \Omega}=\sigma(\theta)=|F(\theta)|^{2} \tag{14}
\end{equation*}
\]

Which, fron equetio:; (7) through (10) yields
\[
\begin{equation*}
\sigma(\theta)=|t(\theta)|^{\dot{c}}+|g(\theta)|^{2}+2 \operatorname{Re}\left(f^{*} g\right)\left\langle\hat{n} \cdot \phi_{1}\right\rangle \tag{15}
\end{equation*}
\]
where \(\vec{P}_{i}\) is the polorization of the incident beam.

ORIGINAL PAGE IS OF POOR QUALITY

Eikonal Phase Shifts
In terms of the eikonal phases, \(x\), the partial wave phase shifts, with first order corrections (ref. il) to account for the spin-orbit contribution, are
\[
\begin{equation*}
\delta_{L}^{ \pm}=(1 / 2)\left\{x_{c}(\vec{b}) \pm(k b \mp 1 / 2) x_{s}(b)\right\} \tag{16}
\end{equation*}
\]
where
\[
\begin{equation*}
k b=L+1 / 2 \tag{17}
\end{equation*}
\]
and
\[
\begin{align*}
& x_{c}(\vec{b})=-(m / k) \int_{-\infty}^{\infty} v_{c}(\vec{r}) d z  \tag{18}\\
& x_{s}(\vec{b})=-(m / k) \int_{-\infty}^{\infty} v_{s}(\vec{r}) d z \tag{19}
\end{align*}
\]

\section*{WK Phase Shifts}

To first order, the WkB phase shifts for outgoing scattered waves are given by (ref. 15).
\[
\begin{align*}
\delta_{L}^{ \pm} & =\int_{r_{L}^{ \pm}}^{\infty} k\left[1-U^{ \pm}(r, L)\right]^{1 / 2} d r \\
& -\int_{r_{C}}^{\infty} k\left[1-U_{C}(r, L)\right]^{1 / 2} d r
\end{align*}
\]
where
\[
\begin{equation*}
U_{C}(r, L)=\frac{L(L+1)}{2 m r^{2} E}+\frac{Z_{T} e^{2}}{E r} \tag{21}
\end{equation*}
\]
and
\[
\begin{equation*}
v^{ \pm}(r, L)=V_{\text {eff }}^{ \pm} / E \tag{2?}
\end{equation*}
\]
with
\[
v_{e f f}^{ \pm}=\frac{L(L+1)}{2 m r^{2}}+\left\{\begin{array}{l}
v_{c}+L v_{s}  \tag{23}\\
v_{c}-(L+1) v_{s}
\end{array}\right\}+\frac{z_{T} e^{2}}{r} .
\]

In the above expressions, \(E\) is the projectile \(k\) :netic energy in the center of mass system. The complex turning points \(r_{L}{ }^{ \pm}\)and \(r^{r^{c}}\) are those values of \(r\) for which
\[
\begin{equation*}
1-U^{ \pm}(r, L)=0 \tag{24}
\end{equation*}
\]
and
\[
\begin{equation*}
1-U_{C}(r, L)=0 \tag{25}
\end{equation*}
\]
respectively. These were located using a computer search rout ine based upon the Newton-Raphson method in the complex plane (ref. 16). The integrals for the complex phase shifts in equation (20) were then evaluated numerically.

Figure 1 displays thenretical cross sections obtained using equation (15) with eikonal phase shifts ohtained from equation (16). For comparison, the experimental results from reference 9 are also dispiayed. The polarization of the incident heam was approximately 70 percent (ref. 9). The optical potential paremeter values utilized for the analysis, listed in Table I, were obtained using gradient-search leastsquares fit to minimize the chi-squared deviation between the theoretical predictions and experimental results (ref. 17). As displayed in Figure 1, the agreement between theory and experiment is excellent except for small angles \(\left(\theta_{\mathrm{cm}} \leq 10^{\circ}\right)\). This disagrecment is not unexpected when using an eikonal formatism (ref. 18). Table II displays the calculated parameiters for the Thomas-Fermi spin-orbit form from equation (5). Comparing Tables I and II shows the calculated parameter values to be quite different than the parameter values obtalined with the computer search.

Figures 2 and 3 display results utilizing the WKB approximation. Complex turning points obtained from equation (24) are shown in Figure 2. For these calculations the potential parameters used in equations (4) and (5) are those listed in Table I. Note that all turning points lie on or noar the real axis. Figure 3 displays the cross sections obtained using !RB phase shifts. Improved ạnrenment hetwenn theory and experiment is noted for small angles. There is, however, significant disagreement for large angles \(\left(\theta_{\mathrm{cm}}>55^{\circ}\right)\). This is likely due to the use of the potential parameters obtained from the eikonal phase shift search. Improvement should be obtained when the parameter search using WKB phase shifts is conducted, since the previously mentioned cikonel shortcoming for small angles should be corrected. A parameter search utilizing WKB phase shifts will, however, te very tim?-consuming since any change in a parameter requires that all turning points and phas shifts be re-determined. Upon completing the parameter scarc.! with the Whis method, the conclusion coricorning the use of the Thnmas-remi form inr the spin-orbit contribution should be rechecked since the previnus ennclusion may no longer we ysid.

\section*{ORIGINAL PACE ! 3 OF POOR QUALITY}

\section*{CONCLIIIING REMARKS}

This work has demonstrated lihat reasonabiy good agreement between theory ind experiment can be ohtained with only 8 parameters in the nuclear potential. The use of potential parameters, obtained from an efkonal formalism, for a WKB analysis, is probably not adequte but may serve as a useful starting point for aKB parameter search. Other improvements to the cheory could be made by discarding the point-charge Coulomb potential in favor of a more realistic extended charge distribution. Coulomb spinorbit effects and Pauli blocking effects should also be included. The latter, however, will increase the number of free parameters from 8 to 16.

\section*{REFERENCES}
1. Wilson, J. W.: Multiple Scattering of Heavy Ions, Glauber Theory, and Optical Model. Physics Letters, vol. B52, no. 2, September 1974, pp. 149-152.
L. Wilson, J. W.: Composite Particle Reaction Theory. Ph.D. dissertation, The College of Hilliam and Mary in Virginia, June 1975.
3. Wilson, J. W.; and Costner, C. M.: Nucleon and Heavy-Ion Total and Absorption Cross Section for Selected Nuclei. NASA TN D-8107, 1975.
4. Wilson, J. W.; and Costner, C. M.: High-Energy Heavy Ion Absorption Cross Section. NASA TM X-73929, 1976.
5. Townsend, L. W.: Optical Model Abrasion Cross Sections for HighEnergy Heavy Ions. NASA TP-1893, 1981.
6. Wilson, J. W.; and Townsend, L. W.: An Optical Model for Comoosite Huclear Scattering. Canadian Journal of Physics, vol. 59, no. 11, November 1981, pp. 1569-1576.
7. Townsend, L. W.: Harmonic Well Matter Densities and Pauli Correlation Effects in Heavy-Ion Collisions. NASA TP-2003, 1982.
8. Joachain, Charles J.: Quantum Collision Theory. American Elsevier Publishing Company, Inc., 1975.
9. Meyer, H. O.; Schwandt, P.; Moake, G. L.; and Singh P. P.: Elastic Scattering of 200 MeV Polarized Protons from \({ }^{12,13} \mathrm{C}\) and the Optical Potential. Physical Review C, vol. 23, no. 2, February 1981, pp. 616-622.
10. Blanpied, G. S.; Hoffmann, G. W.; Barlett, M. L.; McGill, J. A.; Greene, S. J.; Ray, L..; Van Dyck, 0. B.; Amann, J.; and Thiessen, H. A.: Large Angle Scattering of 0.8 GeV Protons from \({ }^{12} \mathrm{C}\). Physical Review C, vol. 23, no. 6, dune 1981, pp. 2599-2605.
11. Waxman, D.; Wilkin, C.; Germond, J. F.; and Lombard, R. J.: Eikonal Corrections for Spin-Orbit. Potentials. Physical Review C, vol. 24, no. 2, August 1981, pn. 578-587.
12. De Jager, C. W.; De Vries, H.; and De Vries, C.: Nuclear Charge and Magnetization-Density-Distribution Parameters from Elastic Electron Scattering. At. Data P Nucl. Nata Tables, vol. 14, no. 5/6, Nov/Dec 1974, pp. 479-508.
13. Bidasaria, H. B.; and Townsend, I. W.: Analytic Optical Potentials for Nucleon-Nucleus and Nucleus-Nucleus Collisions Involving Light and Medium Nuclei. NASA TM-9322n, 1982.
14. Gradshteyn, I. S.; and Ruzhik, T. M.: Table of Integrals, Series, and Products. Academic Pross, 1955.

\section*{ORIGINAL PAGE IS OF POOR QUALITY}
15. Chan, C. K.; Suebka, P.; and Lu, P: Higher-Order WKB Phase Shifts for the Heavy-Ion Optical Potential. Physical Review C, vol. 24, no. 5, November 1981, pp. 2035-2037.
16. James, M. L.; Smith, G. M.; and Wolford, J. C.: Applied Numerical Methods for Digital Computation with Fortran and CSMP, Second Edition. Harper \& Row, 1977.
17. Bevington, P. R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill Book Co., 1969.
18. Glauber, R.: Asymptotic Diffraction Theory. Proceedings of the Fifth High Energy Heavy Ion Study, Berkeley, CA, May 18-22, 1981, Lawrence Berkeley Laboratory Report No. LBL-12652, p. 396.

\title{
Table I. - Optical Potential Parameters from the Eikonal Formailism Search
}
\[
\begin{aligned}
& A_{0}=-4.95-i 48.01 \mathrm{MeV} \\
& A_{1}=0.380 \mathrm{fm}^{-2} \\
& A_{2}=0.495 \mathrm{fm}^{-2} \\
& B_{0}=8.52+i 1.81 \mathrm{MeV} \\
& B_{1}=0.431 \mathrm{fm}^{-2} n \\
& B_{2}=0.688 \mathrm{fm}^{-2}
\end{aligned}
\]

Table 11. - Calculated Thomas-Fermi Spin-Orbit Parameters
\[
\begin{aligned}
& B_{0}=1.14+i 11.04 \mathrm{MeV} \\
& B_{1}=1.635 \mathrm{fm}^{-2} \\
& B_{2}=0.495 \mathrm{fm}^{-2}
\end{aligned}
\]
original page is
OF POOR QUALITY


Figure 1. 200 MeV proton-carbon elastic scattering differential cross sections. The theoretical curve was obtained using eikonal phase shifts.

ORIGINAL PAGE is OF POOR QUALITY

Figure 2 Complex WKB turning points as a function of the
orbital angular momentum quantum number for 200 MeV
proton-carbon scattering.

ORIGINA. FRO: :
of POOR QUARTY


Figure 3. 200 MeV proton-carbon elastic scattering differential cross sections. The theoretical curve was obtained using WKB phase shifts.```

