وجدان مرمونون ومد

AND TO THE LAD CALL NOT THIS EDON

ORE

NASA Technical Memorandum 84636

NASA-TM-84636 19830017254

Nucleon and Deuteron Scattering Cross Sections From 25 MeV/Nucleon to 22.5 GeV/Nucleon

Lawrence W. Townsend, John W. Wilson, and Hari B. Bidasaria

MAY 1983

Nucleon and Deuteron Scattering Cross Sections From 25 MeV/Nucleon to 22.5 GeV/Nucleon

Lawrence W. Townsend and John W. Wilson Langley Research Center Hampton, Virginia

Hari B. Bidasaria Old Dominion University Norfolk, Virginia

and Space Administration

Scientific and Technical Information Branch

1983

INTRODUCTION

Particles lighter than helium comprise over 90 percent of the particle abundance of cosmic radiation (ref. 1). As a result, knowledge of nucleon and deuteron interactions and transport in bulk matter is required for accurate analyses of space radiation shielding requirements. In previous work (refs. 2 to 11), a comprehensive nuclear interaction theory capable of describing incident particle absorption, total, and abrasion cross sections has been developed for use as input into a transport theory under concurrent development (refs. 12 and 13). In the present report, this interaction theory is used to generate tables of nucleon and deuteron cross sections for incident energies of interest in cosmic-ray shielding studies. As such, this work presents an improved and updated version of the original tables presented in reference 4. Comparisons with available experimental data for nucleon-nucleus and deuteron-nucleus collisions are also made.

SYMBOLS

nuclear mass number

А

a	parameter in harmonic well function, fm
B(e)	average slope parameter of nucleon-nucleon scattering amplitude, ${ m fm}^2$
ਬੇ	projectile impact parameter vector, fm
с	Woods-Saxon surface diffuseness, fm
^E lab	projectile laboratory energy per unit mass, GeV/nucleon
e	two-nucleon kinetic energy in their center of mass frame, GeV
Im χ()	imaginary part of eikonal phase shift function
Ŕ	projectile momentum vector relative to target, fm^{-1}
m	nucleon mass, kg
R	radius at half density, fm
Re χ(Ď)	real part of eikonal phase shift function
ŕ	position vector, fm
r _N	nucleon root-mean-square charge radius, fm
S	defined in equation (13)
t	skin thickness, fm
ĩ	average two-nucleon transition amplitude, MeV

د			2
U(x)	reduced	potential,	MeV∠

₩(x)	optical potential (defined in eq. (5)), MeV
x	relative position vector of projectile $(\vec{x} = \vec{b} + \vec{z})$, fm
ỷ	two-nucleon relative position vector, fm
Ż	position vector of projectile in beam direction, fm
α(e)	average ratio of real part to imaginary part of nucleon-nucleon scattering amplitude
β	defined in equation (17)
Ŷ	harmonic well distribution parameter (see eq. (11))
₹ _T	collection of constituent relative coordinates for target, fm
ρ	nuclear density, fm ⁻³
ρο	normalization constant in equations (11) and (14), fm^{-3}
σ(e)	average nucleon-nucleon total cross section, fm^2 or mb
σ _{abs}	absorption cross section, fm^2 or mb
otot	total cross section, fm ² or mb
χ(³)	eikonal phase shift function
Subscrip	ts:
A	matter
с	charge
N	nucleon
n	neutron
P	projectile
р	proton
Т	target
Abbrevia	tions:
HW	harmonic well
WS	Woods-Saxon

Arrows over symbols indicate vectors.

•

THEORETICAL DEVELOPMENT

From eikonal scattering theory, the collision total and absorption cross sections are given by

$$\sigma_{\text{tot}} = 4\pi \int_0^\infty \left\{ 1 - \exp[-\operatorname{Im} \chi(\vec{b})] \cos[\operatorname{Re} \chi(\vec{b})] \right\} b \, db \tag{1}$$

and

$$\sigma_{abs} = 2\pi \int_0^\infty \left\{ 1 - \exp[-2\operatorname{Im} \chi(\vec{b})] \right\} b \, db$$
(2)

where the complex phase function, in terms of the reduced potential U is

$$\chi(\vec{b}) = -\frac{1}{2k} \int_{-\infty}^{\infty} U(\vec{b}, z) dz$$
(3)

For composite particle scattering, the reduced potential is written as

$$U(\vec{x}) = 2mA_{p}A_{T}(A_{p} + A_{T})^{-1} W(\vec{x})$$
(4)

where m is the nucleon mass, A_p is the nuclear mass number of the projectile, and A_T is the nuclear mass number of the target. From references 4 and 5, the nucleus-nucleus optical potential is

$$W(\dot{x}) = A_{p}A_{T} \int d^{3}\dot{\xi}_{T} \rho_{T}(\dot{\xi}_{T}) \int d^{3}\dot{y} \rho_{p}(\dot{x}+\dot{y}+\dot{\xi}_{T}) \tilde{t}(e,\dot{y})$$
(5)

In equation (5), \tilde{t} is the constituent-averaged energy-dependent two-body transition amplitude

$$\tilde{t}(e, \dot{y}) = -\left(\frac{e}{m}\right)^{1/2} \sigma(e) [\alpha(e) + i] [2\pi B(e)]^{-3/2} \exp\left[\frac{-y^2}{2B(e)}\right]$$
 (6)

Nuclear Density Distributions

The correct nuclear density distributions $\rho_{\rm P}$ and $\rho_{\rm T}$ to use in equation (5) are the nuclear ground state, single-particle number densities for the collision pair. Since these are not experimentally known, the number densities are obtained from their experimental charge density distributions by assuming

$$\rho_{c}(\vec{r}) = \int \rho_{N}(\vec{r}') \rho_{A}(\vec{r}+\vec{r}') d^{3}\vec{r}'$$
(7)

where $\rho_{\rm C}$ is the nuclear charge distribution, $\rho_{\rm N}$ is the nucleon charge distribution, and $\rho_{\rm A}$ is the desired nuclear single-particle density. All density distributions in equation (7) are normalized to unity. The nucleon charge distribution is taken to be the usual Gaussian form

$$\rho_{\rm N}(\vec{r}) = \left(\frac{3}{2\pi r_{\rm N}^2}\right)^{3/2} \exp\left(\frac{-3r^2}{2r_{\rm N}^2}\right) \tag{8}$$

where the nucleon root-mean-square charge radius r_N (ref. 14) is

$$r_{\rm N}^2 = 0.76 - 0.11 \,\frac{\rm N}{\rm Z} \tag{9}$$

where N is the neutron number, and Z is the proton number for the nucleus under consideration.

When the projectile is a nucleon, equation (7) yields a delta function for $\rho_{\rm A}$,

$$\rho_{\rm A}(\vec{r}+\vec{r}') = \delta(\vec{r}+\vec{r}') \tag{10}$$

since ρ_c and ρ_N are identical. For nuclei lighter than neon (A < 20), the nuclear charge distribution is the harmonic well (HW) form given by reference 15

$$\rho_{c}(\mathbf{r}) = \rho_{0} \left[1 + \gamma \left(\frac{\mathbf{r}}{a} \right)^{2} \right] \exp \left(\frac{-\mathbf{r}^{2}}{a^{2}} \right)$$
(11)

where ρ_0 is the normalization constant, r is the radial coordinate, and a and γ are charge parameters. Values for a and $\gamma,$ used herein, are listed in

table 1. Substituting equations (8) and (11) into equation (7) yields (ref. 8)

$$\rho_{\rm A}(r) = \frac{\rho_{\rm o} a^3}{8 {\rm s}^3} \left(1 + \frac{3\gamma}{2} - \frac{3\gamma a^2}{8 {\rm s}^2} + \frac{\gamma a^2 r^2}{16 {\rm s}^4} \right) \exp\left(\frac{-r^2}{4 {\rm s}^2}\right) \tag{12}$$

where

$$s^{2} = \frac{a^{2}}{4} - \frac{r_{N}^{2}}{6}$$
(13)

For neon and heavier nuclei (A > 20), the nuclear charge distribution is taken to be the Woods-Saxon (WS) form given by reference 5

$$\rho_{\rm c}({\bf r}) = \frac{\rho_{\rm o}}{1 + \exp[({\bf r} - {\bf R})/{\bf c}]}$$
(14)

where R is the radius at half density, and the diffuseness c is related to the nuclear skin thickness t through

$$c = \frac{t}{4.4} \tag{15}$$

Values for R and t, used herein, are listed in table 1. Most values are taken from reference 15. Inserting equations (8) and (14) into equation (7) yields, after some simplification (ref. 5), a number density ρ_A which is of the WS form (see eq. (14)) with the same R, but different overall normalization factor ρ_0 and surface thickness. The latter is given by

$$t_{A} = \frac{8 \cdot 8r_{N}}{3^{1/2}} \left[\ln \left(\frac{3\beta - 1}{3 - \beta} \right) \right]^{-1}$$
(16)

where

$$\beta = \exp\left(\frac{4 \cdot 4r_N}{t_c 3^{1/2}}\right)$$
(17)

with t_c denoting the charge skin thickness obtained by solving equation (15) after substitution of the charge distribution surface diffuseness values c listed in reference 15.

Nucleon-Nucleon Scattering Parameters

The nucleon-nucleon scattering parameters $\alpha(e)$, $\sigma(e)$, and B(e) used in the energy-dependent two-body transition amplitude (eq. (6)) are obtained by performing a spline interpolation of values taken from various compilations (refs. 16 to 20). The results are displayed in figures 1 to 6 as a function of incident energy. No curves for neutron-neutron scattering parameters are displayed, since little or no experimental data exist for these collisions. For computational purposes, it is assumed that the neutron-neutron parameters are adequately represented by the proton-proton scattering parameters for each energy considered. Details of the constituentaveraging of equation (6) are given in reference 4.

RESULTS

Using the formalism described in the previous sections, total and absorption cross sections for nucleons and deuterons colliding with various target nuclei have been calculated. The results are given in tables 2 to 5. The target nuclei were selected for their applicability to cosmic-ray shielding studies. No significant errors are expected for values obtained by interpolating between the target mass numbers of nuclei displayed in the tables.

Nucleon-Nucleus Cross Sections

Comparisons between the theoretical predictions for nucleon-nucleus scattering, from tables 2 and 3 and representative experimental results (refs. 18 and 21) are displayed in figures 7 to 14. For the absorption cross sections, the agreement is excellent at all energies. For incident energies above 100 MeV/nucleon, the predicted values for total cross sections are typically within 5 percent of the experimental values. For energies less than 100 MeV/nucleon, however, the theory considerably underestimates the total cross sections for each of the displayed target nuclei (see figs. 11 to 14). These discrepancies are likely due to the questionable validity of the eikonal approximation at low energies, as well as to uncertainties in the nucleon-nucleon scattering parameters, particularly $\alpha(e)$ (see ref. 22). Additional sources of possible errors at these lower energies include the neglect of off-shell and spin-dependent effects.

Deuteron-Nucleus Cross Sections

Table 6 contains theoretical cross-section predictions for deuteron-helium and deuteron-carbon scattering along with experimental results from reference 23. Comparison of the predicted and experimental values shows excellent agreement (within 3 to 11 percent). However, the theoretical predictions are all higher than the listed experimental results. These discrepancies, aside from possible contributions resulting from the neglect of off-shell effects, spin-dependent effects, and/or Pauli correlations (ref. 8), may result from the choice of a single Gaussian form for the deuteron density distribution, rather than a more exact sum-of-Gaussians form (ref. 24). The latter, however, requires replacing the single Gaussian term, used herein, by a sum of up to 36 Gaussian terms.

CONCLUDING REMARKS

Tables of nucleon-nucleus and deuteron-nucleus total and absorption cross sections for use in cosmic-ray transport and shielding studies have been generated over the energy range from 25 MeV/nucleon to 22.5 GeV/nucleon. Comparisons between the calculated cross sections and experimental data show excellent agreement except for low energy (<100 MeV) nucleon-nucleus total cross sections, where the lack of substantial agreement is likely due to the questionable validity of the eikonal formalism and to the poorly determined values for the experimental nucleon-nucleon scattering parameters.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 March 31, 1983

REFERENCES

- Haffner, James W.: Radiation and Shielding in Space. Academic Press, 1967, pp. 1-70.
- 2. Wilson, John W.: Composite Particle Reaction Theory. Ph.D. Diss., The College of William and Mary in Virginia, June 1975.
- 3. Wilson, J. W.: Multiple Scattering of Heavy Ions, Glauber Theory, and Optical Model. Phys. Lett., vol. B52, no. 2, Sept. 1974, pp. 149-152.
- 4. Wilson, John W.; and Costner, Christopher M.: Nucleon and Heavy-Ion Total and Absorption Cross Section for Selected Nuclei. NASA TN D-8107, 1975.
- 5. Wilson, J. W.; and Townsend, L. W.: An Optical Model for Composite Nuclear Scattering. Canadian J. Phys., vol. 59, no. 11, Nov. 1981, pp. 1569-1576.
- 6. Townsend, Lawrence W.: Optical-Model Abrasion Cross Sections for High-Energy Heavy Ions. NASA TP-1893, 1981.
- 7. Townsend, L. W.; and Wilson, J. W.: Comment on "Nucleus-Nucleus Total Reaction Cross Sections." Phys. Rev., ser. C, vol. 25, no. 3, Mar. 1982. pp. 1679-1681.
- 8. Townsend, Lawrence W.: Harmonic Well Matter Densities and Pauli Correlation Effects in Heavy-Ion Collisions. NASA TP-2003, 1982.
- 9. Townsend, L. W.; Wilson, J. W.; and Bidasaria, H. B.: On the Geometric Nature of High-Energy Nucleus-Nucleus Reaction Cross Sections. Canadian J. Phys., vol. 60, no. 10, Oct. 1982, pp. 1514-1518.
- 10. Bidasaria, Hari B.; and Townsend, Lawrence W.: Analytic Optical Potentials for Nucleon-Nucleus and Nucleus-Nucleus Collisions Involving Light and Medium Nuclei. NASA TM-83224, 1982.
- 11. Townsend, Lawrence W.; and Bidasaria, Hari B.: Improvements to the Langley HZE Abrasion Model. NASA TM-84542, 1982.
- 12. Wilson, John W.; and Lamkin, Stanley L.: Perturbation Theory for Charged-Particle Transport in One Dimension. Nucl. Sci. & Eng., vol. 57, no. 4, Aug. 1975, pp. 292-299.
- 13. Wilson, John W.: Analysis of the Theory of High-Energy Ion Transport. NASA TN D-8381, 1977.
- 14. Satchler, G. R.; and Love, W. G.: Folding Model Potentials From Realistic Interactions for Heavy-Ion Scattering. Phys. Rep., vol. 55, no. 3, Oct. 1979, pp. 183-254.
- 15. De Jager, C. W.; De Vries, H.; and De Vries, C.: Nuclear Charge- and Magnetization-Density-Distribution Parameters From Elastic Electron Scattering. At. Data & Nucl. Data Tables, vol. 14, no. 5/6, Nov./Dec. 1974, pp. 479-508.

- 16. Amirkhanov, I. V.; Zul'karneev, R. Ya.; Murtazaev, H.; Nadejdin, V. S.; and Satarov, V. I.: dσ(0°)/dΩ, σ_{tot el} and ReA(0°) for Elastic pp-Scattering in the 1-1000 MeV Energy Range. High-Energy Physics and Nuclear Structure, Gunnar Tibell, ed., American Elsevier Pub. Co., Inc., 1974, pp. 47-50.
- 17. Benary, Odette; Price, Leroy R.; and Alexander, Gideon: NN and ND Interactions (Above 0.5 GeV/c) - A Compilation. UCRL-20000 NN, Lawrence Radiation Lab., Univ. California, Aug. 1970.
- 18. Schopper, H., ed.: Elastic and Charge Exchange Scattering of Elementary Particles. Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Group I, Volume 7, Springer-Verlag, 1973.
- 19. Schopper, H., ed.: Elastic and Charge Exchange Scattering of Elementary Particles. Landolt-Borstein Numerical Data and Functional Relationships in Science and Technology, Group I, Volume 9, Springer-Verlag, 1980.
- 20. Binstock, Judith: Parametrization of σ_{tot} , $\sigma(\Theta)$, P(Θ) for 25-100 MeV np Elastic Scattering. Phys. Rev., ser. C, vol. 10, no. 1, July 1974, pp. 19-23.
- 21. Barashenkov, V. S.; Gudima, K. K.; and Toneev, V. D.: Cross Sections for Fast Particles and Atomic Nuclei. Progr. Phys., vol. 17, no. 10, 1969, pp. 683-725.
- 22. Bidasaria, H. B.; Townsend, L. W.; and Wilson, J. W.: Theory of Carbon-Carbon Scattering From 200 to 290 MeV. J. Phys. G.: Nucl. Phys., vol. 9, no. 1, Jan. 1983, pp. L17-L20.
- 23. Jaros, J.; Wagner, A.; Anderson, L.; Chamberlain, O.; Fuzesy, R. Z.; Gallup, J.; Gorn, W.; Schroeder, L; Shannon, S.; Shapiro, G.; and Steiner, H.: Nucleus-Nucleus Total Cross Sections for Light Nuclei at 1.55 and 2.89 GeV/c per Nucleon. Phys. Rev., ser. C, vol. 18, no. 5, Nov. 1978, pp. 2273-2292.
- 24. Wilson, John W.: Intermediate Energy, Nucleon-Deuteron Elastic Scattering. Nucl. Phys., vol. B66, Dec. 17, 1973, pp. 221-244.

Nucleus	Distribution	γ (HW) or	a, fm (HW) or
	(*)	t, im (wS)	R, IM (WS)
2 _H	HW	0	1.71
4 _{He}	HW	0	1.33
7 _{Li}	HW	•327	1.77
9 _{Be}	Н₩	.611	1.791
11 _B	HW	•811	1.69
12 _C	HW	1.247	1.649
14 _N	HW	1.291	1.729
16 ₀	HW	1.544	1.833
20 _{Ne}	WS	2.517	2.74
27 _{Al}	WS	2.284	3.07
40 _{Ar}	WS	2.693	3.47
56 _{Fe}	WS	2.611	3.971
64 _{Cu}	WS	2.504	4.20
80 _{Br}	WS	2.306	4.604
108 _{Ag}	WS	2.354	5.139
138 _{Ba}	WS	2.621	5.618
208 _{Pb}	WS	2.416	6.624

TABLE 1. - NUCLEAR CHARGE DISTRIBUTION PARAMETERS FROM ELECTRON SCATTERING DATA

*HW - harmonic well (eq. (11)); WS - Woods-Saxon
(eq. (14)).

TABLE 2. - NUCLEON-NUCLEUS TOTAL CROSS SECTION

Nucleon-nucleus total cross section, mb, for -

Energy, MeV/amu	Не	C	0	A1	Ar	Fe	Cu	Br	Ag	Ba	Pb
25.	325.	765.	972.	1170.	1679.	1965.	2059.	2078.	2678.	3311.	4109.
50.	258.	635.	810.	1012.	1429.	1710.	1813.	1893.	2425	2980.	3784.
75.	226.	573.	735.	944 .	1327.	1601.	1709.	1813.	2318.	2847.	3645.
100.	197.	511.	659.	885.	1242	1514.	1623.	1744.	2225.	2728.	3520.
125.	175.	460.	596.	833.	1174.	1449.	1562.	1698.	2162	2647.	3434-
150.	157.	416.	539.	777.	1104.	1379.	1497.	1649.	2103.	2576.	3362.
175.	140.	371.	482.	710.	1016.	1286.	1405.	1572.	2014.	2475.	3263.
200.	125.	330.	429.	638.	917.	1172.	1287.	1458.	1879.	2321.	3099.
225.	117.	309.	402.	601.	865.	1111.	1222.	1393.	1800-	2228.	2994.
250.	112.	296.	385.	576.	829.	1068.	1176.	1345.	1741.	2157.	2913.
275.	109.	287.	373.	557.	802.	1034.	1140.	1305.	1691.	2096.	2842.
300.	107.	281.	366.	546.	785.	1014.	1118.	1280.	1660.	2057.	2796.
350.	104.	273.	355.	530.	762.	985.	1085.	1245.	1616.	2003.	2729.
400.	107.	279.	362.	537.	770.	993.	1093.	1249.	1620.	2006.	2732.
500.	116.	302.	391.	570.	812.	1042.	1141.	1294.	1675.	2067.	2804.
600.	126.	324.	419.	603.	855.	1092.	1193.	1342.	1734.	2135.	2885.
700.	133.	340.	440.	626.	886.	1128.	1229.	1378.	1777.	2186.	2943.
800.	136.	348.	449.	638.	903.	1146.	1249.	1397.	1801.	2214.	2975.
900.	138.	354.	456.	647.	915.	1160.	1263.	1412.	1819.	2237.	2999.
1000.	140.	358.	462.	654.	925.	1172.	1275.	1424.	1835.	2256.	3020.
1250.	145.	367.	473.	670.	948.	1198.	1304.	1454.	1871.	2300.	3070.
1500.	147.	372.	479.	678.	958.	1211.	1317.	1470.	1889.	2321.	3094.
1750.	148.	373.	480.	681.	962.	1216.	1323.	1477.	1897.	2331.	3105.
2000.	149.	374.	482.	684.	966.	1220.	1328.	1483.	1904.	2339.	3115.
2500.	150.	374.	481.	685.	967.	1222.	1331.	1488.	1910.	2345.	3123.
3000.	149.	373.	480.	684.	966.	1221.	1330.	1487.	1909.	2344.	3122.
3500.	149.	371.	477.	681.	962.	1216.	1326.	1484.	1904.	2339.	3117.
4000.	148.	368.	473.	676.	956.	1210.	1318.	1477.	1896.	2329.	3106.
5000.	146.	364.	468.	670.	946.	1199.	1307.	1466.	1883.	2313.	3088.
6000.	145.	361.	465.	666.	941.	1193.	1301.	1459.	1875.	2303.	3078.
7000.	144.	360.	462.	663.	936.	1188.	1295.	1454.	1868.	2295.	3069.
8000.	144.	358.	460.	660.	932.	1183.	1290.	1449.	1862.	2288.	3060.
9000.	143.	356.	458.	657.	928.	1178.	1286.	1444.	1856.	2280.	3051.
10000.	143.	355.	457.	655.	925.	1174.	1281.	1439.	1849.	2272.	3043.
12500.	142.	352.	452.	650.	917.	1165.	1271.	1430.	1837.	2256.	3026.
15000.	142.	350.	449.	646.	910.	1158.	1264.	1423.	1828.	2245.	3013.
17500.	142.	348.	446.	642.	905.	1152.	1257.	1417.	1820.	2235.	3002.
20000.	141.	346.	444.	640.	901.	1147.	1252.	1412.	1814.	2228.	2993.
22500.	141.	345.	443.	638.	898.	1143.	1249.	1409.	1810.	2222.	2987.

TABLE 3. - NUCLEON-NUCLEUS ABSORPTION CROSS SECTION

Nucleon-nucleus absorption cross section, mb, for -

Energy, Mol/amu	He	С	0	Al	Ar	Fe	Cu	Br	Ag	Ba	РЬ
ne v/ autu											
25.	190.	435.	552.	652.	948.	1092.	1135.	1117.	1446.	1796.	2192.
50.	144.	344.	438.	540.	773.	913.	963.	987.	1270.	1569.	1965.
75.	124.	302.	386.	490.	699.	836.	888.	929.	1193.	1473.	1866.
100.	108.	269.	345.	449.	641.	775.	829.	880.	1130.	1394	1785.
125.	100.	250.	321.	425.	606.	739.	793	850.	1092.	1347.	1735.
150.	95.	238.	306.	410.	585.	716.	770.	831.	1067.	1316.	1704.
175.	91.	229.	295.	398.	567.	698.	752.	815.	1047.	1291.	1678.
200.	88.	222.	286.	389.	554.	683.	737.	803.	1031.	1271.	1657.
225.	85.	217.	279.	381.	543.	672.	726.	793.	1019.	1256.	1641.
250.	84.	213.	274.	376.	535.	664.	717.	785.	1009	1244.	1629
275.	83.	210.	271.	373.	530.	658.	712.	780.	1003.	1236.	1621.
300.	82.	209.	270.	371.	527.	655	709.	777.	999.	1231.	1616.
350.	81.	207.	267.	368.	523.	651.	704.	773.	994 .	1225.	1610.
400.	84.	213.	274.	375.	532.	661.	714.	782.	1005.	1236.	1623.
500.	90.	228.	293.	394.	557.	689.	742.	806.	1034	1270.	1662.
600.	97.	241.	309	412.	580.	714.	766.	827.	1060	1300.	1696.
700.	101.	250.	321.	423.	596.	731.	783.	841.	1078	1321.	1710
800.	103.	255.	326.	429.	603.	739.	791	848.	1087.	1331.	1730.
900.	104.	257.	329.	432.	608.	744.	796	653.	1092	1337.	1738.
1000.	105.	259.	332.	435.	611.	747.	800.	857.	1097.	1343.	1763.
1250.	107.	263.	336.	440.	617.	754.	807.	864.	1105	1353.	1753.
1500.	109.	264.	337.	442.	620.	757.	810.	867.	1109.	1357.	1758.
1750.	109.	265.	338.	442.	620.	757.	810.	869.	1110.	1358	1760.
2000.	109.	264.	337.	442.	620.	757.	611.	869.	1111.	1359	1760.
2500.	109.	264.	336.	442.	620.	757.	810.	870.	1111.	1359.	1760-
3000.	109.	263.	335.	441.	618.	755.	809.	869.	1109.	1357.	1758.
3500.	109.	262.	334.	440.	616.	753.	807.	867.	1107.	1354	1756.
4000.	108.	261.	332.	438.	614.	751.	804.	865.	1105.	1351	1752
5000.	107.	259.	330.	436.	610.	747.	801.	862.	1101.	1346.	1747.
6000.	107.	258.	329.	435.	609	745.	799.	860.	1098.	1343.	1744
7000.	107.	257.	328.	434.	608	744.	798.	859.	1097	1342.	1743.
8000.	107.	257.	328.	433.	607.	743.	797.	859.	1097	1341.	1742.
9000.	107.	257.	327.	433.	606.	743.	796.	859	1096	1340.	1742.
10000.	107.	257.	327.	433.	606.	743.	796.	859.	1096.	1340.	1741.
12500.	107.	256.	326.	433.	605.	742.	795.	859.	1095	1330.	1740.
15000.	107.	256.	326.	433.	604	741-	795	859	1095	1338-	1740.
17500.	108.	256.	325.	432.	603	740-	794	859	1095	1337-	1730-
20000.	108.	255.	325.	432.	602	739-	794-	859	1094	1336.	1730
22500.	108.	255.	325.	432.	602	739	794	859	1095	1336.	1720.
								0270	10778	T3300	

TABLE 4. - DEUTERON-NUCLEUS TOTAL CROSS SECTION

Deuteron-nucleus total cross section, mb, for -

Energy, MeV/amu	Не	С	0	A1	Ar	Fe	Cu	Br	Ag	Ba	РЬ
25.	732.	1357.	1623.	1934.	2529.	2908.	3040.	3153.	3834.	4532.	5530.
50.	558.	1111.	1343.	1651.	2166.	2532.	2669.	2818.	3442.	4077.	5054.
75.	471.	996.	1214.	1518.	1999.	2358.	2496.	2659.	3256.	3863.	4828.
100.	395.	898.	1104.	1405.	1857.	2210.	2348.	2522.	3097.	3680.	4634.
125.	343.	821.	1019.	1324.	1755.	2101.	2239.	2420.	2979.	3545.	4489.
150.	305.	753.	941.	1252.	1667.	2008.	2145.	2330.	2874.	3426.	4361.
175.	271.	681.	857.	1168.	1567.	1904.	2040.	2229.	2758.	3293.	4215.
200.	242.	610.	770.	1072.	1451.	1781.	1917.	2112.	2623.	3139.	4047.
225.	227.	573.	726.	1020.	1386.	1711.	1846.	2044.	2545.	3052.	3951.
250.	217.	550.	696.	984.	1341.	1662.	1796.	1995.	2489.	2988.	3881.
275.	211.	532.	675.	956.	1306.	1622.	1756.	1955.	2442.	2936.	3824.
300.	207.	523.	662.	940.	1284.	1598.	1731.	1930.	2414.	2903.	3767.
350.	201.	507.	643.	914.	1251.	1560.	1691.	1890.	2367.	2850.	3727.
400.	207.	517.	654.	925.	1263.	1572.	1702.	1899.	2377.	2862.	3739.
500.	227.	555.	699.	974.	1324.	1637.	1768.	1962.	2450.	2944.	3828.
600.	247.	593.	744.	1024.	1386.	1704.	1836.	2028.	2526.	3030.	3923.
700.	261.	620.	775.	1059.	1429.	1751.	1883.	2074.	2579.	3091.	3989.
800.	268.	633.	791.	1076.	1451.	1774.	1907.	2097.	2605.	3120.	4022.
900.	272.	642.	801.	1088.	1466.	1790.	1924.	2114.	2625.	3142.	4046.
1000.	276.	649.	810.	1098.	1478.	1804.	1937.	2127.	2640.	3160.	4065.
1250.	283.	664.	829.	1120.	1506.	1835.	1969.	2159.	2677.	3201.	4111.
1500.	286.	671.	£37.	1131.	1519.	1849.	1984.	2175.	2694.	3220.	4133.
1750.	287.	673.	839.	1135.	1523.	1854.	1990.	2181.	2701.	3228.	4142.
2000.	287.	675.	842.	1138.	1527.	1859.	1995.	2186.	2707.	3234.	4149.
2500.	286.	675.	841.	1139.	1529.	1861.	1997.	2189.	2710.	3238.	4154.
3000.	285.	672.	£39.	1137.	1526.	1858.	1994.	2187.	2708.	3234.	4151.
3500.	283.	669.	835.	1133.	1521.	1853.	1989.	2183.	2702.	3228.	4144.
4000.	280.	664.	829.	1127.	1513.	1845.	1981.	2175.	2693.	3218.	4133.
5000.	277.	657.	821.	1117.	1501.	1832.	1968.	2162.	2679.	3202.	4115.
6000.	275.	653.	816.	1112.	1495.	1825.	1961.	2155.	2671.	3192.	4105.
7000.	273.	650.	812.	1107.	1489.	1819.	1954.	2149.	2664.	3184.	4096.
8000.	272.	647.	808.	1103.	1484.	1813.	1949.	2143.	2657.	3177.	4088.
9000.	271.	644.	£05.	1099.	1479.	1808.	1943.	2138.	2651.	3170.	4081.
10000.	270.	641.	802.	1096.	1474.	1802.	1938.	2133.	2646.	3164.	4073.
12500.	267.	636.	795.	1088.	1464.	1792.	1927.	2123.	2634.	3150.	4059.
15000.	265.	631.	789.	1082.	1456.	1783.	1919.	2116.	2625.	3139.	4047.
17500.	264.	627.	784.	1076.	1449.	1776.	1911.	2109.	2616.	3130.	4037.
20000.	262.	624.	780.	1072.	1444.	1770.	1905.	2103.	2610.	3122	4029.
22500.	262.	623.	778.	1070.	1440.	1766.	1901.	2100.	2605.	3117.	4023.

TABLE 5. - DEUTERON-NUCLEUS ABSORPTION CROSS SECTION

Deuteron-nucleus absorption cross section, mb, for -

-

Energy, MeV/amu	Не	C	0	A1	Ar	Fe	Cu	Br	Ag	Ba	Pb
25.	438.	779.	925.	1083.	1415.	1609.	1672.	1712.	2077.	2452.	2958.
50.	319.	610.	733.	866.	1164.	1349.	1416.	1481.	1805.	2137.	2629
75.	268.	535.	649.	801.	1055.	1235.	1303.	1377.	1684	1997.	2481.
100.	230.	478.	583.	735.	971.	1147.	1215.	1296.	1590.	1889.	2365.
125.	209.	445.	546.	696.	923.	1096.	1164.	1248.	1534	1825	2297.
150.	196.	426.	523.	673.	894.	1066.	1133.	1219.	1500.	1786.	2255.
175.	187.	410.	505.	654.	870.	1041.	1109.	1196.	1474.	1756.	2222.
200.	180.	398.	491.	640.	852.	1022.	1090.	1178.	1453.	1732.	2197.
225.	174.	389.	481.	629.	839.	1008.	1075.	1164.	1437.	1714.	2177.
250.	171.	382.	473.	621.	829.	997.	1064.	1154.	1425.	1700.	2163.
275.	168.	378.	468.	616.	823.	991.	1058.	1148.	1418.	1692.	2154.
300.	167.	376.	466.	613.	819.	987.	1054.	1145.	1414.	1688.	2149.
350.	165.	373.	462.	609.	814.	981.	1049.	1139.	1408.	1681.	2141.
400.	170.	382.	472.	620.	827.	996.	1063.	1153.	1474 .	1699.	2161.
500.	185.	407.	501.	650.	865.	1036.	1103.	1191.	1468.	1749.	2216.
600.	198.	429.	527.	677.	898.	1071.	1139.	1225	1507.	1794	2264.
700.	208.	444.	544.	695.	921.	1095.	1163.	1248.	1534.	1824.	2296.
800.	212.	451.	552.	704.	931.	1106.	1174.	1258.	1546.	1837.	2311.
900.	215.	455.	557.	709.	938.	1113.	1181.	1265.	1553.	1846.	2320.
1000.	217.	458.	560.	712.	942.	1117.	1185.	1270.	1558.	1852.	2327.
1250.	220.	463.	566.	719.	949.	1125.	1194.	1278.	1568	1862	2338.
1500.	221.	465.	568.	721.	952.	1128.	1197.	1281.	1571.	1866.	2342
1750.	221.	465.	568.	721.	952.	1128.	1197.	1281.	1571.	1866.	2363.
2000.	221.	464.	567.	720.	951.	1127.	1196.	1281.	1571.	1865.	2342
2500.	220.	463.	565.	719.	949.	1125.	1194.	1280.	1569.	1863.	2340.
3000.	219.	461.	563.	717.	946.	1123.	1191.	1277.	1566.	1860.	2336.
3500.	218.	459.	561.	715.	943.	1120.	1188.	1275.	1563.	1856	2332.
4000.	216.	457.	558.	712.	940.	1116.	1185.	1272.	1560.	1852.	2328
5000.	214.	454.	555.	709.	936.	1112.	1181.	1267.	1554.	1846.	2322.
6000.	213.	453.	553.	707.	934.	1109.	1178.	1265.	1552 .	1843.	2319.
7000.	213.	452.	552.	706.	.932.	1108.	1177.	1264.	1550.	1841.	2317.
8000.	212.	451.	551.	705.	931.	1107.	1176.	1263.	1549.	1840.	2315
9000.	212.	450.	551.	704.	930.	1106.	1175.	1262.	1549.	1839.	2315.
10000.	212.	450.	550.	704.	930.	1105.	1174.	1262.	1548.	1838.	2314.
12500.	211.	449.	549.	703.	928.	1104.	1173.	1261.	1547.	1836.	2312.
15000.	210.	448.	547.	702.	927.	1102.	1172.	1260.	1545.	1835-	2311
17500.	210.	447.	546.	701.	925.	1101.	1170.	1259.	1544-	1833.	2309.
20000.	209.	446.	545.	700.	924	1100.	1169-	1258-	1543-	1032-	2308-
22500.	209.	446.	545.	700.	924.	1100.	1169.	1258.	1543.	1832	2308-

TABLE 6. - DEUTERON-HELIUM (d-He) AND DEUTERON-CARBON (d-C) TOTAL AND ABSORPTION CROSS SECTIONS AT 0.87 AND 2.1 GeV/NUCLEON

	σ _t	ot' ^{mb}	^o abs, ^{mb}					
Collison pair	Theory	Experiment (*)	Theory	Experiment (*)				
0.87 GeV/nucleon								
d-He d-C	271 639	255.5 ± 3.5 617.5 ± 8.2	214 454	198 ± 10 411 ± 21				
2.1 GeV/nucleon								
d-He d-C	287 675	267 ± 5 630 ± 14	221 464	204 ± 12 426 ± 22				

*Reference 23.

.

Figure 1.- Neutron-proton total cross section as a function of incident energy.

Figure 2.- Proton-proton total cross section as a function of incident energy.

Figure 3.- Ratio of real part to imaginary part of the forward neutron-proton scattering amplitude as a function of incident energy.

Figure 4.- Ratio of real part to imaginary part of the forward proton-proton scattering amplitude as a function of incident energy

Figure 5.- Neutron-proton scattering slope parameter as a function of incident energy.

Figure 6.- Proton-proton scattering slope parameter as a function of incident energy.

Figure 7.- Nucleon-carbon absorption cross sections as a function of incident nucleon kinetic energy.

Figure 8.- Nucleon-aluminum absorption cross sections as a function of incident nucleon kinetic energy.

Figure 9.- Nucleon-copper absorption cross sections as a function of incident nucleon kinetic energy.

Figure 10.- Nucleon-lead absorption cross sections as a function of incident nucleon kinetic energy.

Figure 11.- Nucleon-carbon total cross sections as a function of incident nucleon kinetic energy.

Figure 12.- Nucleon-aluminum total cross sections as a function of incident nucleon kinetic energy.

Figure 13.- Nucleon-copper total cross sections as a function of incident nucleon kinetic energy.

Figure 14.- Nucleon-lead total cross sections as a function of incident nucleon kinetic energy.

1. Report No. NASA TM-84636	2. Government Access	ion No.	3. Recip	ient's Catalog No.
4. Title and Subtitle			5. Repo	rt Date
FROM 25 MeV/NUCLEON TO 2	2.5 GeV/NUCLEON	TIONS	May	1983
			6. Perfo 199	rming Organization Code -20-76-01
7. Author(s)			8. Perfo	rming Organization Report No.
Lawrence W. Townsend, Jol	hn W. Wilson,		L-1	5596
and hall B. Bludsalla			10. Work	Unit No.
9. Performing Organization Name and Addr	25			
NASA Langley Research Ce	nter		11. Contr	act or Grant No.
Hampton, VA 23665				
			13. Type	of Report and Period Covered
12. Sponsoring Agency Name and Address			Tec	hnical Memorandum
National Aeronautics and	Space Administrat	ion	14 Sport	voring Agency Code
Washington, DC 20546				wing Agency wide
15 Supplementary Notes			I	
Lawrence W. Townsend and	John W. Wilson:	Langley j	Research Cente	r, Hampton, Virginia,
Hari B. Bidasaria: Old	Dominion Universit	y, Ňorfo	lk, Virginia.	· · · · · · · · · · · · · · · · · · ·
16. Abstract				
Within the context of a	fouble-folding ont	ical not	ontial approvi	mation to the
exact nucleus-nucleus mu	tiple-scattering	series. (ential approximation entrangements approximation entrangement of the second scatter of t	ring theory is
used to generate tables	of nucleon and dev	iteron to	tal and absorp	tion cross sec-
tions at kinetic energies	s between 25 MeV/n	ucleon a	nd 22.5 GeV/nuc	cleon for use in
cosmic-ray transport and	shielding studies	. Compa	risons of pred	ictions for
nucleon-nucleus and deute	eron-nucleus absor	ption and	d total cross s	sections with
experimental data are al	so made.			
		40.01.11.1		
Nugloon-nuglous asst	- -	18. Distribut	ion Statement	- 1 <i>i</i>
Deuterop-nucleus scatteri	ng	Und	classified - U	limited
Spacecraft shielding				
		•		
			S1	ubject Category 73
19. Security Classif. (of this report)	20. Security Classif. (of this	page)	21. No. of Pages	22. Price
Unclassified	Unclassified		24	A02

For sale by the National Technical Information Service, Springfield, Virginia 22161

-

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

NASA

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return