162 research outputs found

    The Snake - a Reconnecting Coil in a Twisted Magnetic Flux Tube

    Full text link
    We propose that the curious Galactic Center filament known as ``The Snake'' is a twisted giant magnetic flux tube, anchored in rotating molecular clouds. The MHD kink instability generates coils in the tube and subsequent magnetic reconnection injects relativistic electrons. Electrons diffuse away from a coil at an energy-dependent rate producing a flat spectral index at large distances from it. Our fit to the data of \citet{gray95a} shows that the magnetic field ∼0.4 mG\sim 0.4 \> \rm mG is large compared to the ambient ∼7μ G\sim 7 \mu \> \rm G field, indicating that the flux tube is force-free. If the {\em relative} level of turbulence in the Snake and the general interstellar medium are similar, then electrons have been diffusing in the Snake for about 3×105 yr3 \times 10^5 \> \rm yr, comparable to the timescale at which magnetic energy is annihilated in the major kink. Estimates of the magnetic field in the G359.19-0.05 molecular complex are similar to our estimate of the magnetic field in the Snake suggesting a strong connection between the physics of the anchoring molecular regions and the Snake. We suggest that the physical processes considered here may be relevant to many of the radio filaments near the Galactic Center. We also suggest further observations of the Snake and other filaments that would be useful for obtaining further insights into the physics of these objects.Comment: 11 pages, 1 figur

    The Centaurus A Northern Middle Lobe as a Buoyant Bubble

    Get PDF
    We model the northern middle radio lobe of Centaurus A (NGC 5128) as a buoyant bubble of plasma deposited by an intermittently active jet. The extent of the rise of the bubble and its morphology imply that the ratio of its density to that of the surrounding ISM is less than 10^{-2}, consistent with our knowledge of extragalactic jets and minimal entrainment into the precursor radio lobe. Using the morphology of the lobe to date the beginning of its rise through the atmosphere of Centaurus A, we conclude that the bubble has been rising for approximately 140Myr. This time scale is consistent with that proposed by Quillen et al. (1993) for the settling of post-merger gas into the presently observed large scale disk in NGC 5128, suggesting a strong connection between the delayed re-establishment of radio emission and the merger of NGC 5128 with a small gas-rich galaxy. This suggests a connection, for radio galaxies in general, between mergers and the delayed onset of radio emission. In our model, the elongated X-ray emission region discovered by Feigelson et al. (1981), part of which coincides with the northern middle lobe, is thermal gas that originates from the ISM below the bubble and that has been uplifted and compressed. The "large-scale jet" appearing in the radio images of Morganti et al. (1999) may be the result of the same pressure gradients that cause the uplift of the thermal gas, acting on much lighter plasma, or may represent a jet that did not turn off completely when the northern middle lobe started to buoyantly rise. We propose that the adjacent emission line knots (the "outer filaments") and star-forming regions result from the disturbance, in particular the thermal trunk, caused by the bubble moving through the extended atmosphere of NGC 5128.Comment: 38 pages, 13 figures, submitted to ApJ; a version with higher resolution figures is available at http://www.mso.anu.edu.au/~saxton/papers/cena.pd

    Global simulations of magnetorotational turbulence - I. Convergence and the quasi-steady state

    Get PDF
    Magnetorotational turbulence provides a viable mechanism for angular momentum transport in accretion discs. We present global, three-dimensional (3D), magnetohydrodynamic accretion disc simulations that investigate the dependence of the turbulent stresse

    Equilibrium disks, magnetorotational instability mode excitation, and steady-state turbulence in global accretion disk simulations

    Get PDF
    Global three-dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when nonlinear motions-perhaps triggered by the onset of turbulence-upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once the disk has expelled the initially net flux field and settled into quasiperiodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with previous works. In particular, the globally averaged stress normalized to the gas pressure (αP) = 0.034, with notably higher values achieved for simulations with higher azimuthal resolution. Supplementary tests are performed using different numerical algorithms and resolutions. Convergence with resolution during the initial linear MRI growth phase is found for 23-35 cells per scale height (in the vertical direction)

    Enhanced MHD transport in astrophysical accretion flows: turbulence, winds and jets

    Full text link
    Astrophysical accretion is arguably the most prevalent physical process in the Universe; it occurs during the birth and death of individual stars and plays a pivotal role in the evolution of entire galaxies. Accretion onto a black hole, in particular, is also the most efficient mechanism known in nature, converting up to 40% of accreting rest mass energy into spectacular forms such as high-energy (X-ray and gamma-ray) emission and relativistic jets. Whilst magnetic fields are thought to be ultimately responsible for these phenomena, our understanding of the microphysics of MHD turbulence in accretion flows as well as large-scale MHD outflows remains far from complete. We present a new theoretical model for astrophysical disk accretion which considers enhanced vertical transport of momentum and energy by MHD winds and jets, as well as transport resulting from MHD turbulence. We also describe new global, 3D simulations that we are currently developing to investigate the extent to which non-ideal MHD effects may explain how small-scale, turbulent fields (generated by the magnetorotational instability -- MRI) might evolve into large-scale, ordered fields that produce a magnetized corona and/or jets where the highest energy phenomena necessarily originate.Comment: 8 pages, 2 figures. Minor revision, published version: Proc 14th International Congress on Plasma Physics, Fukuoka, Japan, Sep 200

    Multi-epoch Sub-arcsecond [Fe II] Spectroimaging of the DG Tau Outflows with NIFS. II. On the Nature of the Bipolar Outflow Asymmetry

    Get PDF
    The origin of bipolar outflow asymmetry in young stellar objects (YSOs) remains poorly understood. It may be due to an intrinsically asymmetric outflow launch mechanism, or it may be caused by the effects of the ambient medium surrounding the YSO. Answering this question is an important step in understanding outflow launching. We have investigated the bipolar outflows driven by the T Tauri star DG Tauri on scales of hundreds of AU, using the Near-infrared Integral Field Spectrograph (NIFS) on Gemini North. The approaching outflow consists of a well-collimated jet, nested within a lower-velocity disc wind. The receding outflow is composed of a single-component bubble-like structure. We analyse the kinemat- ics of the receding outflow using kinetic models, and determine that it is a quasi-stationary bubble with an expanding internal velocity field. We propose that this bubble forms because the receding counterjet from DG Tau is obstructed by a clumpy ambient medium above the circumstellar disc surface, based on similarities between this structure and those found in the modeling of active galactic nuclei outflows. We find evidence of interaction between the obscured counterjet and clumpy ambient material, which we attribute to the large molecular envelope around the DG Tau system. An analytical model of a momentum-driven bubble is shown to be consistent with our interpretation. We conclude that the bipolar outflow from DG Tau is intrinsically symmetric, and the observed asymmetries are due to environmental effects. This mechanism can potentially be used to explain the observed bipolar asymmetries in other YSO outflows.Comment: 16 pages, 10 figures, accepted for publication in MNRA

    Interactions of Jets with Inhomogeneous Cloudy Media

    Full text link
    We present two-dimensional slab-jet simulations of jets in inhomogeneous media consisting of a tenuous hot medium populated with a small filling factor by warm, dense clouds. The simulations are relevant to the structure and dynamics of sources such as Gigahertz Peak Spectrum and Compact Steep Spectrum radio galaxies, High Redshift Radio Galaxies and radio galaxies in cooling flows. The jets are disrupted to a degree depending upon the filling factor of the clouds. With a small filling factor, the jet retains some forward momentum but also forms a halo or bubble around the source. At larger filling factors channels are formed in the cloud distribution through which the jet plasma flows and a hierarchical structure consisting of nested lobes and an outer enclosing bubble results. We suggest that the CSS quasar 3C48 is an example of a low filling factor jet - interstellar medium interaction whilst M87 may be an example of the higher filling factor type of interaction. Jet disruption occurs primarily as a result of Kelvin-Helmholtz instabilities driven by turbulence in the radio cocoon not through direct jet-cloud interactions, although there are some examples of these. In all radio galaxies whose morphology may be the result of jet interactions with an inhomogeneous interstellar medium we expect that the dense clouds will be optically observable as a result of radiative shocks driven by the pressure of the radio cocoon. We also expect that the radio galaxies will possess faint haloes of radio emitting material well beyond the observable jet structure.Comment: 21 pages, 16 figures, submitted to MNRAS. A version with full resolution figures is available at: http://www.mssl.ucl.ac.uk/~cjs2/pdf/cloudy_hue.pd
    • …
    corecore