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ABSTRACT
Magnetorotational turbulence provides a viable mechanism for angular momentum transport
in accretion discs. We present global, three-dimensional (3D), magnetohydrodynamic accre-
tion disc simulations that investigate the dependence of the turbulent stresses on resolution.
Convergence in the time- and volume-averaged stress-to-gas-pressure ratio, 〈αP〉, at a value
of ∼0.04, is found for a model with radial, vertical and azimuthal resolution of 12-51, 27
and 12.5 cells per scaleheight (the simulation mesh is such that cells per scaleheight varies
in the radial direction). The gas pressure dependence of the quasi-steady state stress level is
also examined using models with different scaleheight-to-radius aspect ratio (H/R), revealing
a weak dependence of 〈αP〉 on pressure.

A control volume analysis is performed on the main body of the disc (|z| < 2H) to examine
the production and removal of magnetic energy. Maxwell stresses in combination with the
mean disc rotation are mainly responsible for magnetic energy production, whereas turbulent
dissipation (facilitated by numerical resistivity) predominantly removes magnetic energy from
the disc. Re-casting the magnetic energy equation in terms of the power injected by Maxwell
stresses on the boundaries of, and by Lorentz forces within, the control volume highlights
the importance of the boundary conditions (of the control volume). The different convergence
properties of shearing-box and global accretion disc simulations can be readily understood
on the basis of choice of boundary conditions and the magnetic field configuration. Periodic
boundary conditions restrict the establishment of large-scale gradients in the magnetic field,
limiting the power that can be delivered to the disc by Lorentz forces and by stresses at the
surfaces. The factor of 3 lower resolution required for convergence in 〈αP〉 for our global disc
models compared to stratified shearing-boxes is explained by this finding.

Key words: accretion, accretion discs – instabilities – MHD – turbulence.

1 IN T RO D U C T I O N

For the astrophysically common process of mass accretion through
a disc to be effective, outward angular momentum transport must
occur (Shakura & Sunyaev 1973; Pringle 1981). In the past two
decades it has become clear that self-sustaining magnetized turbu-
lence driven by the magnetorotational instability (MRI) can play
this role (Balbus & Hawley 1998).

Due to the highly non-linear nature of magnetorotational turbu-
lence, numerical simulations have become a common tool in its
study. These simulations come in a number of flavours: unstrati-
fied shearing-boxes (where the vertical component of gravity is ne-
glected) (Hawley, Gammie & Balbus 1995; Fromang & Papaloizou
2007; Fromang et al. 2007; Lesur & Longaretti 2007; Guan et al.
2009; Heinemann & Papaloizou 2009; Latter, Lesaffre & Balbus
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2009; Lesaffre, Balbus & Latter 2009; Simon, Hawley & Beck-
with 2009; Bodo et al. 2011; Käpylä & Korpi 2011; Lesur & Lon-
garetti 2011; Latter & Papaloizou 2012), stratified shearing-boxes
(Brandenburg et al. 1995; Stone et al. 1996; Fleming, Stone &
Hawley 2000; Miller & Stone 2000; Brandenburg 2005; Johansen,
Youdin & Klahr 2009; Davis, Stone & Pessah 2010; Gressel 2010;
Shi, Krolik & Hirose 2010; Guan & Gammie 2011; Oishi & Mac
Low 2011; Simon, Hawley & Beckwith 2011; Simon, Beckwith &
Armitage 2012), unstratified global models (Armitage, Reynolds &
Chiang 2001; Hawley 2001; Nelson & Gressel 2010; Sorathia et al.
2012) and stratified global models (Hawley 2000; Arlt & Rüdiger
2001; Hawley & Krolik 2001; Fromang & Nelson 2006, 2009;
Beckwith, Hawley & Krolik 2008; Lyra et al. 2008; Noble, Krolik
& Hawley 2010; Sorathia, Reynolds & Armitage 2010; Beckwith,
Armitage & Simon 2011; Flock et al. 2011, 2012a; Hawley, Guan
& Krolik 2011; O’Neill et al. 2011; McKinney, Tchekhovskoy &
Blandford 2012; Parkin & Bicknell 2013). Shearing-box simula-
tions focus on a local patch of an accretion disc whereas global

C© 2013 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at T
he A

ustralian N
ational U

niversity on D
ecem

ber 20, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


2282 E. R. Parkin and G. V. Bicknell

simulations have the potential to study the entire radial (and verti-
cal) extent of an accretion disc. Despite these numerous different
approaches to modelling accretion disc turbulence, similarities ex-
ist in the magnetorotational turbulence that they exhibit. In general,
there is an initial phase where the MRI develops and transient
magnetic field amplification arises, following which the growth of
stresses subsides and the disc settles into a quasi-steady state (QSS).

There have been mixed results from simulations as to what sets
the QSS stress level. The results of unstratified shearing-box simu-
lations by Fromang & Papaloizou (2007) (see also- Fromang et al.
2007; Lesur & Longaretti 2007; Guan et al. 2009; Simon et al.
2009; Fromang 2010; Käpylä & Korpi 2011) show that dissipation
(i.e. resistivity and viscosity) dictates the QSS stress level. When
this dissipation is purely numerical in origin, increasing the simu-
lation resolution causes a reduction in the volume-averaged stress
in zero net flux, unstratified shearing-box simulations. Fromang &
Papaloizou (2007) argue that this occurs because magnetorotational
turbulence always drives energy to the smallest resolved scale, thus
removing energy from the larger (angular momentum transporting)
eddies. Sorathia et al. (2012) have recently revisited this issue using
unstratified global discs, revealing a contrasting result of converged
stresses with increasing resolution. What then sets the QSS stress
level? Vishniac (2009) has argued that stratification, if present, will
affect the QSS stress, and it is indeed found that including strati-
fication facilitates convergence (Davis et al. 2010; Shi et al. 2010;
Oishi & Mac Low 2011). Furthermore, including a net flux field in
unstratified shearing-boxes enables convergence (e.g. Simon et al.
2009). Considering the aforementioned results, there is a clear in-
dication that the choice of numerical setup and/or magnetic field
configuration play crucial roles.

In this work, we take the logical next step and investigate conver-
gence in stratified global disc models, which is indeed found, but
for lower resolutions than in equivalent shearing-box simulations.
A complementary analysis of magnetic energy production leads us
to conclude that boundary conditions have a profound influence on
the QSS stress. The remainder of this paper is organized as fol-
lows: in Section 2, we describe the simulation setup and diagnostics
used in this investigation. In Section 3, we examine the dependence
of the saturated turbulent state on simulation resolution and disc
scaleheight. The results from the application of a control-volume
analysis to the simulations are presented in Section 4. We discuss
our findings in the context of a unified interpretation for magnetoro-
tational turbulence in different numerical setups in Section 5 and
close with conclusions in Section 6.

2 TH E MO D EL

2.1 Simulation code

The time-dependent equations of ideal magnetohydrodynamics are
solved using the PLUTO code (Mignone et al. 2007) in a 3D spher-
ical (r, θ , φ) coordinate system. The relevant equations for mass,
momentum, energy conservation and magnetic field induction are:

∂ρ

∂t
+ ∇ · [ρv] = 0, (1)

∂ρv

∂t
+ ∇ · [ρvv − B B + P I] = −ρ∇�, (2)

∂E

∂t
+ ∇ · [(E + P )v − (v · B)B] = −ρv · ∇� − � (3)

∂B
∂t

= ∇ × (v × B). (4)

Here, E = ρε + 1
2 ρ|v|2 + uB is the total energy, ε is the internal

energy, v is the velocity, ρ is the mass density, P is the pressure and
uB = 1

2 |B|2 is the magnetic energy. We use an ideal gas equation
of state, P = (γ − 1)ρε, with an adiabatic index γ = 5/3. The
adopted scalings for density, velocity, temperature and length are,
respectively,

ρscale = 1.67 × 10−7 gm s−1,

vscale = c,

Tscale = μmc2/kB = 6.5 × 1012 K,

lscale = 1.48 × 1013 cm,

where c is the speed of light, and the value of lscale corresponds to
the gravitational radius of a 108 M� black hole.

The gravitational potential due to a central point mass situated
at the origin, �, is modelled using a pseudo-Newtonian potential
(Paczyńsky & Wiita 1980):

� = −1

r − 2
. (5)

Note that we take the gravitational radius (in scaled units), rg = 1.
The Schwarzschild radius, rs = 2 for a spherical black hole and
the innermost stable circular orbit lies at r = 6. The � term on
the RHS of equation (3) is an ad hoc cooling term used to keep
the scaleheight of the disc approximately constant throughout the
simulations; without any explicit cooling in conjunction with an adi-
abatic equation of state, dissipation of magnetic and kinetic energy
leads to an increase in gas pressure and, consequently, disc scale-
height over time. The form of � used is identical to that of Parkin
& Bicknell (2013); further details can be found in that paper.1

The PLUTO code was configured to use the five-wave HLLD Rie-
mann solver of Miyoshi & Kusano (2005), piece-wise parabolic
reconstruction (PPM; Colella & Woodward 1984), limiting during
reconstruction on characteristic variables (e.g. Rider, Greenough &
Kamm 2007), second-order Runge–Kutta time-stepping and the up-
wind CONTACT Constrained Transport scheme of Gardiner & Stone
(2008) (to maintain ∇ · B = 0) which includes transverse correc-
tions to interface states. This configuration was found to be stable
for linear MRI calculations by Flock et al. (2011).

The grid used for the simulations is uniform in the r and φ di-
rections and extends from r = 4−34 and φ = 0−π/2. A graded
mesh is used in the θ direction which is uniform within |z| ≤ 2H
and stretched between 2H ≤ |z| ≤ 5H, where H is the thermal
disc scaleheight. For our fiducial model, gbl-sr, there are a total of
170 cells in the θ direction, of which 108 are uniformly distributed
within |z| ≤ 2H and the remaining 62 cells on the stretched sec-
tions between 2H ≤ |z| ≤ 5H. Details of the grid resolutions used
in the simulations are provided in Table 1. The adopted boundary
conditions are identical to those used in Parkin & Bicknell (2013).
Finally, floor density and pressure values are used which scale lin-
early with radius and have values at the outer edge of the grid of
10−4 and 5 × 10−9, respectively.

1 Note that there is a typographical error in equation 3 of Parkin & Bicknell
(2013), where ρ� should read �.
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Global MHD discs I 2283

Table 1. List of global simulations.

Model H/R Resolution nr/H nθ /H nφ/H
(nr, nθ , nφ ) (|z| < 2H)

gbl-lr 0.1 340,112,128 8.5–36 18 8
gbl-sr 0.1 512,170,196 12–51 27 12.5
gbl-hr 0.1 768,256,256 18–77 37 16
gbl-lr-la 0.1 420,140,70 10.5–45 20 4.5
gbl-hr-la 0.1 768,256,128 18–77 37 8
gbl-thin 0.05 512,170,320 6–25 27 10

2.2 Initial conditions

The simulations start with an analytic equilibrium disc which is
isothermal in height (T = T(R), where T is the temperature) and
possesses a purely toroidal magnetic field. The derivation of the
disc equilibrium and a detailed description of the initial conditions
can be found in Parkin & Bicknell (2013). In cylindrical coordinates
(R, z), the density distribution, in scaled units, is given by

ρ(R, z) = ρ(R, 0) exp

(−{�(R, z) − �(R, 0)}
T (R)

β

1 + β

)
, (6)

where the pressure, P = ρT, and the ratio of gas-to-magnetic pres-
sure, β = 2P/|B|2 ≡ 2P/B2

φ is initially set to 20 in all models.
For the radial profiles ρ(R, 0) and T(R), we use simple functions
inspired by the Shakura & Sunyaev (1973) disc model, except with
an additional truncation of the density profile at a specified outer
radius:

ρ(R, 0) = ρ0f (R, R0, Rout)

(
R

R0

)ε

, (7)

T (R) = T0

(
R

R0

)η

, (8)

where ρ0 sets the density scale, R0 and Rout are the radius of the
inner and outer disc edge, respectively, f(R, R0, Rout) is a tapering
function (Parkin & Bicknell 2013) and ε and χ set the slope of the
density and temperature profiles, respectively. In all of the global
simulations R0 = 7, Rout = 30, ρ0 = 10, ε =−33/20 and η =−9/10.
In Section 3, models with aspect ratios of H/R = 0.05 and 0.1 are
considered. These ratios are achieved by setting T0 = 4.5 × 10−4

and 1.5 × 10−3, respectively. The rotational velocity of the disc is
close to Keplerian, with a minor modification due to the gas and
magnetic pressure gradients,

v2
φ(R, z) = v2

φ(R, 0) + {�(R, z) − �(R, 0)}R

T

dT

dR
, (9)

where

v2
φ(R, 0) = R

∂�(R, 0)

∂R
+ 2T

β

+
(

1 + β

β

) (
RT

ρ(R, 0)

∂ρ(R, 0)

∂R
+ R

dT

dR

)
. (10)

The region outside of the disc is set to be an initially stationary,
spherically symmetric, hydrostatic atmosphere. The transition be-
tween the disc and background atmosphere occurs where their total
pressures balance. To initiate the development of turbulence in the
disc, a low-wavenumber, non-axisymmetric Fourier mode is excited
in the poloidal velocities with amplitude 0.1cs, where cs is the sound
speed.

2.3 Diagnostics

A volume-averaged value (denoted by angled brackets) for a vari-
able q is computed via

〈q〉 =
∫

qr2 sin θ dr dθ dφ∫
r2 sin θ dr dθ dφ

. (11)

Similarly, azimuthal averages are denoted by square brackets,

[q] =
∫

qr sin θ dφ∫
r sin θ dφ

. (12)

Time averages receive an overbar, such that a volume- and time-
averaged quantity reads 〈q〉. Throughout this paper, we concentrate
on the region between 10 < r < 30 and π/2 − θ2H/R < θ < π/2 +
θ2H/R , where θ2H/R = tan −1(2〈H/R〉) and H/R = cs/vφ (where cs is
the sound speed). We define this region as the ‘disc body’.

The efficiency of angular momentum transport is typically quan-
tified from the total stress,

Wij = Gij − MB
ij , (13)

where the Reynolds stress tensor,

Gij = ρδviδvj , (14)

and the Maxwell stress tensor,

MB
ij = BiBj − δij uB. (15)

The largest contribution comes from the R − φ component of Wij

(Brandenburg et al. 1995; Hawley et al. 1995; Stone et al. 1996),

WRφ = ρδvRδvφ − BRBφ, (16)

where we have defined the perturbed flow velocity as2 δvi = vi −
[vi], with i = R, φ. Normalizing by the gas pressure defines the
α-parameter,

〈αP〉 = 〈WRφ〉
〈P 〉 . (17)

Furthermore, we calculate the R − φ component of the Maxwell
stress normalized by the magnetic pressure,

〈αM〉 = − 〈
MB

Rφ

〉
〈uB〉 = 〈−2BRBφ〉

〈|B|2〉 . (18)

We follow Noble et al. (2010) and Hawley et al. (2011) and utilize
a ‘quality factor’ to measure the ability of the simulations to resolve
the wavelength of the fastest growing MRI mode, λMRI. Defining,

λMRI−i = 2π|vAi|r sin θ

vφ

, (19)

where i = r, θ , φ, and vAi = Bi/
√

ρ is the Alfvén speed, the ‘quality
factor’ is given by,

Qi = λMRI−i

�xi
, (20)

where �xi is the cell spacing in direction i. The ‘resolvability’ –
the fraction of cells in the disc body that have Q > 8 (e.g. Sorathia
et al. 2012) – is then defined as,

Ni = �C(Qi > 8)

�C
, (21)

where C represents a cell.

2 Using an azimuthally averaged velocity when calculating the perturbed
velocity removes the influence of strong vertical and radial gradients (Flock
et al. 2011).
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2.4 Fourier analysis

The simulation data is Fourier transformed in spherical coordinates
to compute power spectra for different simulation variables. A de-
tailed description of the method used is given in Appendix A. In
brief, we define the Fourier transform of a function f(r, θ , φ) as,

F (k) = F (k, χ,ψ) =
∫ 2π

0

∫ π

0

∫ ∞

0
f (r, θ, φ) eik·x

× r2 sin θ dr dθ dφ. (22)

It then follows that the angle-averaged (in Fourier space) amplitude
spectrum,

�(k) =
∫ 2π

0

∫ π

0
F (k)F ∗(k) sin χ dχ dψ, (23)

where an asterisk (∗) indicates a complex conjugate. The total power
at a given wavenumber – the power spectrum – is then given by
k2�(k). To compute a power spectrum, we take 300 simulation
checkfiles (equally spaced over the last 15P orb

30 , where P orb
r is the or-

bital period at a radius r) and compute 30 power-spectra, each time-
averaged over 0.5P orb

30 . These 30 realizations are then averaged-over
to produce the final power spectrum.

2.5 Summary of models

In Table 1, we list six simulations aimed at investigating the follow-
ing points.

(i) Convergence with resolution. Models gbl-lr, gbl-sr and gbl-hr
are low-, standard- and high-resolution variants, respectively, with
identical cell aspect ratio and H/R = 0.1.

(ii) Importance of azimuthal resolution. Model gbl-lr-la (gbl-
hr-la) is identical to gbl-lr (gbl-hr) with the exception of a lower
azimuthal resolution (denoted by the affix ‘-la’).

(iii) Scaleheight dependence. Models gbl-sr and gbl-thin have
disc scaleheights of H/R = 0.1 and 0.05, respectively. These models
feature an identical number of cells per scaleheight in the vertical
and azimuthal directions.

3 THE QUASI-STEADY STATE

Following the initial transient phase of evolution, the disc settles into
a QSS. In this section, we examine the characteristics of this state
for the different simulations. We list time- and volume-averaged
parameter values pertaining to the steady-state turbulence in
Table 2.

Figure 1. The time evolution of 〈αP〉 (upper) and 〈αM〉 (lower) in the global
models, where time is in units of the orbital period at a radius of r = 30,
P orb

30 . (For comparison, P orb
30 = 11.6P orb

7 , therefore roughly 370 inner disc
orbits are covered.) Details pertaining to the models are listed in Table 1 and
corresponding time-averaged results are given in Table 2.

3.1 Resolution dependence

3.1.1 Convergence: gbl-lr, gbl-sr and gbl-hr

The volume-averaged stress normalized to gas pressure, 〈αP〉, dis-
plays a dependence on resolution in the magnitude of the tran-
sient peak at t ∼ 2P orb

30 (Fig. 1). Following this, 〈αP〉 steadily de-
clines until t ∼ 12P orb

30 , at which point the curves level-off and a
QSS is reached. We find a time-averaged value during the QSS of
〈αP〉 
 0.04 for models gbl-lr, gbl-sr and gbl-hr, indicating conver-
gence with resolution. At the point of convergence, 〈αP〉 〈βd〉 
 0.6,
where βd is the disc body plasma-β. This is in agreement with, but
slightly higher than, the relation found for unstratified shearing-box
simulations (Sano et al. 2004; Blackman, Penna & Varnière 2008;

Table 2. List of time-averaged quantities from the global simulations. �tav (second column) is
the time interval over which time averaging was performed.

Model �tav Nr Nθ Nφ 〈βr 〉 〈βθ 〉 〈βφ〉 〈βd〉 〈αP〉 〈αM〉

gbl-lr 12–31 0.57 0.27 0.67 131 395 14 12 0.043 0.39
gbl-sr 12–31 0.69 0.43 0.75 128 361 17 14 0.040 0.42
gbl-hr 12–31 0.78 0.56 0.80 123 332 18 15 0.039 0.42
gbl-lr-la 18–31 0.31 0.07 0.25 655 2296 34 32 0.013 0.29
gbl-hr-la 12–31 0.76 0.50 0.61 150 430 18 15 0.035 0.39
gbl-thin 12–31 0.52 0.44 0.75 120 416 15 13 0.044 0.41
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Guan et al. 2009). The volume-averaged Maxwell stress normalized
to the magnetic pressure, 〈αM〉 converges at a value of 0.42 (lower
panel of Fig. 1), consistent with previous high-resolution stratified
shearing-box (Hawley et al. 2011; Simon et al. 2012) and global
disc models (Parkin & Bicknell 2013).

Convergence in 〈αP〉 is coincident with convergence in the resolv-
ability (equation 21) – the ability of the numerical grid to resolve
the fastest growing MRI modes. Examining Fig. 2, one sees that the
φ-direction is the best resolved, followed by the radial direction, and
then the θ -direction. At the resolution of model gbl-sr, Nr is clearly

Figure 2. Resolvability (see equation 21) of the MRI in the global simula-
tions in the r (upper), θ (middle) and φ-directions (lower).

higher than Nθ , suggesting that convergence in global models is
tied to the radial magnetic field. That convergence with resolution
is more readily achievable for the radial magnetic field is illustrated
by the relative magnetic field strengths: 〈βr 〉 
 128, 〈βθ 〉 
 361 and
〈βφ〉 
 17. The converged value for Nφ is roughly 0.8, consistent
with some fraction of the disc having weak magnetic fields (due to
zero net flux dynamo oscillations) which have corresponding λMRI

values which are below the simulation resolution. Poloidal magnetic
fields in our simulations appear relatively strong, with our models
returning 〈B2

r 〉/〈B2
φ〉 = 0.13 and 〈B2

θ 〉/〈B2
φ〉 = 0.05 compared to

respective values of ∼0.08 and ∼0.02 for the highest resolution
model in Hawley et al. (2011). We attribute this difference to the
higher resolution used in our models.

Power spectra computed for density, kinetic energy and total
magnetic energy perturbations are shown in Fig. 3. A perturbation
for a variable q is calculated by subtracting the azimuthal average,
such that δq = q − [q]. Perturbations are used to reduce the in-
fluence of large-scale radial and vertical gradients on the resulting
power spectra. The position of the low-wavenumber turnover be-
tween models gbl-lr, gbl-sr and gbl-hr is consistent at k/kH 
 0.5,
illustrating that the resolution of the largest physical structures is
converged. The slope of the magnetic energy power spectrum is ap-
proximately k−2. This apparent constant power-law slope suggests
a self-similar transfer of energy from large to small scales which
may indicate an inertial cascade, although it may also be due to the
injection of energy by the MRI at all realizable scales (Fromang
& Papaloizou 2007). The power spectra for magnetic energy and
kinetic energy exhibit very similar shapes. On further inspection,
one sees that magnetic energy is slightly larger than kinetic energy
on length-scales of roughly a disc scaleheight (0.4 � k/kH � 5,
where kH = 2π/〈H 〉), whereas they are approximately equal on the
smallest length-scales (k/kH � 5). This differs from the stratified
shearing-box simulations presented by Johansen et al. (2009), for
which kinetic energy was found to dominate over magnetic energy
at all but the very largest scales in the box. Comparing to the global
models of Beckwith et al. (2011), we note that the low-wavenumber
turnover for magnetic and kinetic energy arises at a similar value
(they find k/kH ∼ 0.3). However, there is a considerable difference in
the amplitudes of kinetic and magnetic energy fluctuations, where
Beckwith et al. (2011) find the latter to be an order of magnitude
lower than the former. The source of this difference is unclear.
However, there are number of differences between our approach
and that used by Beckwith et al. (2011) in the calculation of the
Fourier transforms and the related power spectra. In calculating the
value of a fluctuating quantities δQ, we have adopted a straightfor-
ward approach of subtracting an azimuthally averaged value of Q,
whereas Beckwith et al. (2011) fit a two-dimensional distribution
in the radial and vertical directions, which they then subtract to
determine δQ. Another major difference is that we define a conven-
tional spherical Fourier transform through equation (22), whereas
Beckwith et al. (2011) construct azimuthal averages of fluctuating
quantities, define a normalized measure of spatial fluctuations in
the (r, θ ) coordinates and then define a Fourier transform in r and
θ treating r and θ as pseudo-Cartesian coordinates (their equation
15). A comparison of these two approaches and the implications for
comparing computed accretion disc spectra with one another and
also with textbook spectra for homogeneous turbulence is beyond
the scope of this paper.

The power spectra all display a pronounced turnover at high
wavenumber, which depends on resolution, and which we interpret
as the dissipation scale. Indeed, the morphology of the steep, but
slightly curved, step at the high-wavenumber end of the magnetic
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Figure 3. Angle-averaged energy spectrum calculated from time-averaged
simulation data showing density (top), kinetic energy (middle) and magnetic
energy (lower). The dotted lines are representative power-law slopes (see
Section 3). The horizontal axis is in units of kH = 2π/〈H 〉.

energy power spectrum is indicative of a resolved separation be-
tween the ohmic and viscous dissipation scales (see, e.g., Kraichnan
& Nagarajan 1967).

Irrespective of resolution, most of the power in αP is on the largest
length-scales (i.e. at low wavenumber – Fig. 4). In fact, the relatively
flat slope to the αP power spectrum indicates that a large amount
of power is also contained in moderate length-scales. The slope of

Figure 4. Angle-averaged energy spectrum for the stress-to-gas-pressure
ratio, |αP(k)|2, calculated from time-averaged simulation data. The horizon-
tal axis is in units of kH = 2π/〈H 〉.

the power spectrum changes at k/kH ∼ 3, becoming steeper, and
indicating that smaller length-scales contribute considerably less
to the global stress. Therefore, although magnetic field correlation
lengths demonstrate that MRI-driven turbulence is localized (Guan
et al. 2009), we find evidence for angular momentum transport being
dominated by larger length-scales, of size � 〈H〉.

Increasing the simulation resolution permits structure to occupy
smaller spatial scales. This is illustrated by the simulation snapshots
of β−1 shown in Fig. 5. As one progresses to higher resolution
through models gbl-lr, gbl-sr and gbl-hr, the size of structures gets
progressively finer. Also, contrasts in the magnetic energy, which
are particularly noticeable in the coronal region, become sharper
at higher resolution. This equates to an increase in ∇ × B with
resolution, which we examine in more detail in Section 4.

In summary, convergence is achieved for a resolution of 12–51
cells/H in radius, 27 cells/H in the θ -direction and 12.5 cells/H in the
φ-direction (model gbl-sr). This is considerably below the 64–128
cells/H required for convergence in stratified shearing-box simula-
tions found by Davis et al. (2010), whereas the vertical resolution
is comparable to the 25 cells/H necessary to produce sustained tur-
bulence in the models of Fromang & Nelson (2006) and Flock et al.
(2011). In Section 5, we provide an explanation for this dramatic
difference.

3.1.2 Influence of φ−resolution: gbl-lr-la and gbl-hr-la

When the azimuthal field is under-resolved, turbulent activity dies
out, as discussed by Fromang & Nelson (2006), Flock et al. (2011)
and Parkin & Bicknell (2013). This effect can be seen in the stresses
and resolvabilities computed for model gbl-lr-la (a lower azimuthal
resolution variant of gbl-lr – see Table 1), which we plot in Fig. 1
and 2. Repeating this experiment at higher resolution (models gbl-
hr and gbl-hr-la), one finds that even though the azimuthal field is
barely resolved (eight cells/H in the azimuthal direction for gbl-hr-
la), only a slightly lower 〈αP〉 value is obtained. Therefore, we find
a similar dependence on azimuthal resolution to that discussed by
Hawley et al. (2011), although this dependence appears to become
less pronounced at higher resolution, and this is possibly due to
compensation by the poloidal grid resolution. This indicates that
low azimuthal resolution can, to some extent, be compensated for
by higher poloidal resolution. However, based on these results it
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Figure 5. 3D volume rendering showing the ratio of magnetic pressure
to gas pressure (β−1) for models gbl-lr (top), gbl-sr (middle) and gbl-hr
(lower). A wedge has been excised from the upper hemisphere of the disc
to expose the disc mid-plane.

would seem advisable to adopt an aspect ratio close to unity. We
also note that our αP and αM values are higher than in the models of
Beckwith et al. (2011) and Hawley et al. (2011). We attribute this
to the higher simulation resolution and lower cell aspect ratio used
in our models (see also the discussion in Fromang & Nelson 2006;
Flock et al. 2011; Parkin & Bicknell 2013).

As discussed in the previous section, the power spectra in Fig. 3
display a turnover at high wavenumber corresponding to the dissipa-
tion scale. All simulations presented in this paper rely on numerical
dissipation; hence, one may anticipate that numerical resolution
sets this scale and adopting a lower resolution in a certain direction
may shift the dissipation scale to lower wavenumbers. Comparing
the curves for models gbl-lr and gbl-lr-la in Fig. 3, the slope in
the magnetic energy power spectrum is steeper for gbl-lr-la in the
wavenumber range 1 � k/kH � 6. This steeper slope is readily un-
derstood as a consequence of under-resolving the fastest growing
MRI modes in the φ-direction – energy cannot be injected by the
MRI if the mode-growth is not resolved. In relation to the discus-
sion in the previous section, this implies that the power-law slope in
the magnetic energy power spectrum of model gbl-lr, for example,
is a consequence of magnetic energy injection by the MRI and not
solely due to an inertial cascade of energy from large to small scales,
consistent with results presented by Fromang & Papaloizou (2007)
and Johansen et al. (2009) which illustrate the driving of magnetic
energy to smaller scales by the MRI.

3.2 Other factors which might affect the saturated state

3.2.1 Gas pressure dependence: gbl-thin

Based on a suite of unstratified shearing-box simulations, Sano et al.
(2004) have reported a dependence of the QSS stress level on the
gas pressure. To examine whether this dependence exists in global
simulations, one can utilize simulations with different aspect ratios
because H/R ∝ cs ∝ √

P . Models gbl-sr and gbl-thin,3 which fea-
ture H/R = 0.1 and 0.05, respectively, and an identical number of
cells per scaleheight in the vertical and azimuthal directions (Ta-
ble 1), return comparable values of 〈αP〉, with a slightly higher value
for the latter (Table 2). Based on the two disc aspect ratios we have
explored, there is a weak dependence of 〈αP〉 on gas pressure. This
lack of dependence stems from the similarity in values for the disc
body plasma-β, βd (Table 2). Essentially, even though gas pressure
is higher in gbl-sr compared to gbl-thin, the relative strength of the
Maxwell stresses is very similar.

3.2.2 Initial magnetic field strength

The independence of the saturated state on the initial field strength
has been demonstrated by Sano et al. (2004) (zero net flux, unstrat-
ified shearing-boxes), Guan & Gammie (2011) (stratified shearing-
boxes) and Hawley et al. (2011) (global stratified discs). In all cases,
the dissipation, or expulsion, of the initial magnetic field configu-
ration disconnects its influence from the QSS.

3.2.3 Initial perturbation to the disc

The growth rate of the non-axisymmetric MRI depends on the
wavenumber of the initial perturbation (Balbus & Hawley 1992).

3 Model gbl-thin was previously presented in Parkin & Bicknell (2013) as
gbl-m10 + and further analysis can be found therein.
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Faster magnetic field growth arises for higher wavenumbers pro-
vided they are subcritical. Therefore, the growth rate of the stresses
in the disc will be higher for higher wavenumber perturbations.
Parkin & Bicknell (2013) examined this in the context of global
discs, finding that irrespective of the initially excited MRI mode,
the onset of non-linear (turbulent) motions in the disc erases the
initial perturbation and leads to a statistically similar saturated
state.

3.3 Astrophysical implications

Simulations gbl-lr, gbl-sr and gbl-hr converge at 〈αP〉 
 0.04 which
should be compared with values of ∼0.1−0.3 commonly derived
from relaxation times in post-outburst cataclysmic variables (Smak
1999; King, Pringle & Livio 2007; Kotko & Lasota 2012). Although
a discrepancy exists, we note that our converged values are consis-
tent with those for isolated AGN discs (Starling et al. 2004). At-
taining higher values for 〈αP〉 may, therefore, require the influence
of a companion star to be included in simulations. Alternatively,
large-scale (net vertical flux) magnetic fields and/or large magnetic
Prandtl numbers have been shown to yield larger stresses (Lesur &
Longaretti 2007; Bai & Stone 2013; Fromang et al. 2013; Lesur,
Ferreira & Ogilvie 2013).

4 C O N T RO L VO L U M E A NA LY S I S

In order to understand the global characteristics of our model ac-
cretion discs, we have performed a control volume analysis of the
magnetic energy budget. This involves evaluating terms in the mag-
netic energy equation integrated over a specific volume, and for
this purpose we choose the disc body (defined in Section 2.3). The
boundaries of this control volume are open in the radial and vertical
directions, and periodic in the azimuthal direction.

Previous shearing-box simulations show a common characteristic
of a consistent power on large scales when convergence is achieved
(Simon et al. 2009; Davis et al. 2010). Thus, the large-scale power in
the turbulent spectrum is important when assessing the convergence
properties of accretion disc simulations. In turbulent gases (and in
our simulations), most of the energy is contained in the largest scales
so that our volume-integrated approach to the energy budget is
useful in understanding the characteristics of the low-wavenumber
part of the spectrum.

Another important aspect of the control volume analysis is that it
provides a guide for constraining the various terms describing pro-
duction, advection, volumetric changes and dissipation in analytic
models of accretion discs (e.g. Balbus & Papaloizou 1999; Kuncic
& Bicknell 2004). For example, this analysis informs us whether
the vertical advection of turbulent energy is important compared to
the production of turbulence in magnetized discs.

4.1 Magnetic energy evolution

To set the scene, we first examine the control volume averaged
magnetic energy, 〈uB〉 (Fig. 6). The curves follow the general mor-
phology of a rapid rise in uB during the initial transient phase,
followed by a similarly rapid fall in magnetic energy which gradu-
ally flattens out as the QSS (∂〈αP〉/∂t → 0) is reached. For gbl-sr,
for example, the QSS is reached after t 
 14P orb

30 . Subsequently,
there is a slow, but steady, decrease in magnetic energy.

Figure 6. Volume-averaged magnetic energy, 〈uB〉, as a function of time.

We begin with the magnetic field induction equation, to which
we add a term for numerical resistivity, ηnum, such that equation (4)
now reads,

∂B
∂t

= ∇ × (v × B) + ηnum∇2 B. (24)

The motivation for introducing ηnum will become clear in the re-
mainder of the paper. For now, we merely note that the truncated
order of accuracy of numerical finite volume codes (such as the
PLUTO code used in this investigation) brings with it a truncation
error which we interpret as a numerical resistivity and which we
model with the additional ohmic term in equation (24). Taking the
scalar product of B with equation (24) and re-arranging terms gives

∂uB

∂t
= BiBj sij − 1

3
uBvk,k − ∂

∂xj
(uBvj ) + ηnumBi∇2Bi, (25)

where uB = |B|2/2, the fluid shear tensor,

sij = 1

2

(
vi,j + vj,i − 2

3
δij vk,k

)
, (26)

and the Maxwell stress tensor is given by equation (15), and a
subscript comma denotes partial differentiation. Next, we expand
v = vt + vrot, where vt is the perturbed velocity field in the rotating
frame and

vrot = vrotφ̂ = [vφ]φ̂, (27)

is the azimuthally averaged rotational velocity. This step allows
the respective contributions to the terms in equation (25) from the
mean background disc rotation and the perturbed velocity field (in
the rotating frame) to be inspected. Substituting equation (27) into
equation (25) and integrating over a control volume V with bounding
surface S, and using the relation,

BiBj sij − 1

3
uBvk,k = BiBjvi;j − uBvk,k, (28)

to separate shear and expansion terms (where a subscript semicolon
indicates a covariant derivative) one arrives at

U̇B = Crot
sh + C t

sh + Cexp + Aadv + Dnum, (29)

where

U̇B =
∫

∂uB

∂t
dV , (30)

Crot
sh =

∫
BiBjv

rot
i;j dV , (31)
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C t
sh =

∫
BiBjv

t
i;j dV , (32)

Cexp = −
∫

uBvt
k,k dV , (33)

Aadv = −
∮

uBvt
j nj dS, (34)

Dnum = −ηnum

(∮
∂MB

ij

∂xi

nj dS +
∫

|j |2 dV

)
, (35)

and where the current density, ji = (∇ × B)i, and the Maxwell
stress tensor, MB

ij , is given by (15). All terms featuring in equa-
tions (29)–(35) are exact and can be explicitly calculated from the
simulation data. The numerical resistivity, ηnum, is estimated by
solving equation (29) for Dnum and then solving equation (35) for
ηnum. To maintain consistency with the third-order spatial recon-
struction used in the simulations, we compute terms appearing in
equations (29)–(35) to third-order accuracy using reconstruction via
the primitive function (see Colella & Woodward 1984; Laney 1998,
for further details).

Before proceeding to the results of the control volume analysis, a
brief description of the terms and their respective meaning is worth-
while. The volume-integrated rate of change of magnetic energy is
given by U̇B. Crot

sh and C t
sh are the production of magnetic energy

by the shear in the mean disc rotation and the turbulent velocity
field, respectively. Cexp corresponds to changes in magnetic energy
due to expansion in the gas. Aadv is a surface term for the advection
of magnetic energy in/out of the control volume by the turbulent
velocity field. There are contributions to the surface integrals from
the radial and θ -direction – periodic boundaries in the azimuthal
direction lead to a cancellation, and thus no contribution from those
surfaces. (Note that the term

∮
uBvrot

j nj dS vanishes because of the
periodic boundary conditions in the azimuthal direction; therefore,
the mean disc rotation does not advect magnetic energy in/out of
the control volume.) Finally, Dnum corresponds to numerical dis-
sipation. We note that the value of Dnum is exact, as it is merely
the remainder required to balance the magnetic energy equation
(equation 29). However, our determination of ηnum from Dnum is not
exact in view of our assumed ohmic form for the numerical resistive
term in equation (24). Nevertheless, we consider this estimate to be
indicative of the actual numerical resistivity.

In Fig. 7, we plot the results of applying the control volume anal-
ysis to model gbl-sr. One immediately notices that magnetic energy
production is dominated by Crot

sh (see also discussion in Kuncic &
Bicknell 2004) and removal is predominantly via numerical dissi-
pation, Dnum. There is non-negligible magnetic energy removal by
divergence in the velocity field (Cexp). Examining the directional
contributions to this term, one finds roughly equal magnitudes for
the r, θ and φ components. However, the poloidal contributions
(r, θ ) are expansions, which remove magnetic energy, whereas the
azimuthal contribution is compressive, thus being a source of mag-
netic energy. Flow divergence impacting on magnetic field evolu-
tion has also been observed in stratified shearing-box simulations by
Johansen et al. (2009). The turbulent velocity field does not con-
tribute greatly to magnetic energy production, as is demonstrated by
the comparably small values for the C t

sh curve. A negligible amount
of magnetic energy appears to be advected out of the volume in
the radial and vertical directions as shown by the curve for Aadv,
consistent with stable magnetically buoyant (Parker) modes within
|z| < 2H (Shi et al. 2010). Therefore, although ‘butterfly’ diagrams
indicate quasi-periodic vertical magnetic field expulsion (e.g. Gres-

Figure 7. Comparison of terms pertaining to the control volume analysis
for model gbl-sr (see Section 4.1). The upper and lower panels show results
for time intervals 0–32 and 20−32P orb

30 , respectively. Rates of change of
energy are plotted in units of 1/P orb

30 – to convert to code units divide the
values by P orb

30 = 964. Note the difference in scale between the plots.

sel 2010), it would seem that a much greater amount of energy is
dissipated within the disc body. The rate of change of magnetic
energy is relatively small compared to magnetic energy production
by Crot

sh and dissipation by Dnum. Computing a time-averaged value

between orbits 12–32, we find U̇B = −3.5 × 10−6. Therefore, al-
though 〈αP〉 exhibits quasi-steady behaviour, 〈uB〉 is continually
declining, but at a constantly decreasing rate.

Examining the dissipation term, Dnum, in more detail, one finds
that the first term in square brackets on the RHS of equation (35) is
considerably smaller than the second. This shows that dissipation
is primarily powered by the current density,4 |j|. In Fig. 8, we show∫ |j |2dV . There is a striking similarity between the morphology of
the curves in this plot with those for 〈uB〉 (Fig. 6), suggesting an inti-
mate link between the evolution of the magnetic energy, dissipation
driven by a turbulent magnetic field and magnetic energy production
(also demonstrated by Crot

sh and Dnum in Fig. 7). Comparing time-
averaged values for Dnum from models gbl-lr, gbl-sr and gbl-hr, we
find very little difference. Therefore, as convergence with resolu-
tion is achieved for 〈αP〉, the level of dissipation also converges. We

4 The link between the turbulent magnetic field and the current density bears
strong similarities to the that between the velocity field and the vorticity,
ωi = (∇ × v)i.
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Figure 8. Integral of the current density squared, |j|2, over the control
volume. This term indicates the level of turbulent activity in the magnetic
field and is the dominant contributor to Dnum.

elaborate on the above points in Section 5 in the context of a unified
description for the observed evolution in accretion disc simulations.

The formulation of the magnetic energy equation used in equa-
tion (29) allows one to distinguish the contributions from shearing
and expansions in the disc. However, with a view of understanding
the influence of the boundary conditions for the control volume on
the magnetic energy, and on the power injected by Maxwell stresses
and Lorentz forces, an alternative formulation may be used. To this
end we re-cast equation (29) as

U̇B = Crot
Lor + C t

Lor + Arot
MS + At

MS + Aadv + Dnum, (36)

where

Crot
Lor = −

∫
vrot

i

∂MB
ij

∂xj

dV = −
∫

vrot
i F L

i dV , (37)

C t
Lor = −

∫
vt

i

∂MB
ij

∂xj

dV = −
∫

vt
iF

L
i dV , (38)

CLor = Crot
Lor + C t

Lor, (39)

Arot
MS =

∮
MB

ij v
rot
j nidS, (40)

At
MS =

∮
MB

ij v
t
j nidS, (41)

AMS = Arot
MS + At

MS, (42)

and where U̇B, Aadv and Dnum are given by equations (30), (34)
and (35), respectively. The rates of work done within the control
volume by the Lorentz force, FL, in combination with the mean disc
rotation, vrot, and the turbulent velocity field (in the rotating frame),
vt, are given by Crot

Lor and C t
Lor, respectively. Similarly, the rates of

work done on the surfaces of the control volume by combinations
of the Maxwell stresses and vrot and vt are, respectively, given by
Arot

MS and At
MS.

In Fig. 9, we show the result of applying equation (36) to model
gbl-sr. Magnetic energy production, which was shown to be pre-
dominantly due to Crot

sh in Fig. 7, can now be attributed to the
rates of work done by the mean disc rotation in combination with
Maxwell stresses applied to the boundaries of the volume, Arot

MS, and
Lorentz force acting within the volume, Crot

Lor. In contrast, the turbu-
lent velocity field acts to remove energy from the control volume, as

Figure 9. Comparing different terms from the one-zone disc body model
for model gbl-sr. The top and bottom panels show results over the time
intervals 0–32 and 20−32P orb

30 , respectively. Rates of change of energy are
plotted in units of 1/P orb

30 – to convert to code units divide the values by
P orb

30 = 964. Note the difference in scale between the plots.

shown by the terms At
MS and C t

Lor. Examining Arot
MS, which involves

an integration over the surfaces of the control volume, one finds
the magnitude of the radial surface terms to be much greater than
from the vertical surfaces and, in particular, the inner radial surface
dominates. Therefore, the rate of magnetic energy production is to
a large extent due to the difference between the rates of work done
on the radial surfaces of the control volume by Maxwell stresses,
and by Lorentz forces within the volume.

4.2 Numerical resistivity

Computing the numerical resistivity, ηnum, provides insight into the
intrinsic dissipation arising from the simulation method, embodying
the truncated order of accuracy present in commonly used numer-
ical schemes. For example, in our present investigation, we use
third-order accurate spatial reconstruction and second-order accu-
rate time-stepping. Model gbl-sr returns 〈ηnum〉 = 6.1 × 10−5 and
〈ReM〉 = 1273, whereas, on the basis of the conclusions drawn by
Fleming et al. (2000), Oishi & Mac Low (2011) and Flock, Henning
& Klahr (2012b), sustained turbulence should not be observed for
ReM � 3000. This disagreement does not appear to be related to
our approximation of a constant ηnum throughout the control vol-
ume, as tests computed for annuli with radial range 10 < r < 20 and
20 < r < 30 reveal variations in ηnum of only 5–10 per cent. However,
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it may be due to our assumption that numerical resistivity behaves
like an ohmic resistivity. Previous estimates of numerical resistivity
(Fromang & Papaloizou 2007; Simon et al. 2009) adopt a Fourier
analysis of the dissipation term whereby ηnum is derived from the
high-wavenumber end of the spectrum. These analyses reveal that
numerical dissipation deviates from ohmic at low wavenumbers.
Our volume-averaged values for ηnum provide an estimate which is
biased towards the large scales, and thus may be higher than values
at the small scales (i.e. the turbulent dissipation scale). We do note,
however, that the third-order accurate spatial reconstruction used
in our simulations may allow sustained turbulence at lower ReM

than the second-order accuracy used by Flock et al. (2012b). Fur-
thermore, shearing-box boundary conditions suppress terms in the
magnetic energy equation that can supply/sustain large-scale mag-
netic fields – the importance of global disc boundary conditions
to magnetic field generation is discussed in more detail in Section
5.3. Therefore, the large-scale dynamo apparent in stratified global
discs (Fig. 11 – see also Arlt & Rüdiger 2001; Fromang & Nel-
son 2006; O’Neill et al. 2011) may operate effectively at low ReM

(Brandenburg 2009; Käpylä & Korpi 2011), meaning that global
discs could exhibit sustained turbulence at lower ReM than in a
shearing-box (Fleming et al. 2000; Oishi & Mac Low 2011). For
further discussion of numerical resistivity see Hirose, Krolik &
Stone (2006) and Hawley et al. (2011).

In summary, there are two main reasons for the difference by a
factor ∼3 for the critical Reynolds number for the maintenance of
turbulence in global disc models compared to the work of Flock
et al. (2012b). (1) Differing mathematical approaches to the esti-
mation of the resistivity – Flock et al. (2012b) include an ohmic
resistive term specifically in their simulations, whereas we estimate
it using an ohmic model for the numerical resistivity. (2) The Flock
et al. simulations are spatially second-order accurate whereas our
simulations (and analysis) are spatially third-order accurate.

Examining the results for models gbl-lr, gbl-sr and gbl-hr in
Fig. 10 and Table 3, there is the consistent trend that as the resolution
is increased (and the cell aspect ratio is kept fixed) the value of
ηnum decreases. For example, between models gbl-lr and gbl-sr,
the resolution has been increased by a factor of 1.5 resulting in
a decrease in ηnum by a factor of 1.8. Based on the results for
these three simulations, we find ReM ≈ 0.45(nr)1.3, where nr is
the number of cells in the radial direction, leading to an estimated
resolution requirement of nr × nθ × nφ 
 2600 × 860 × 1000 cells
to achieve a magnetic Reynolds number, ReM = 104. This poses a

Figure 10. Numerical resistivity, ηnum, computed from the control volume
analysis (see Sections 4.1 and 4.2).

Table 3. Time averaged numerical resistiv-
ity, ηnum and magnetic Reynolds number,
ReM. ηnum is estimated using equation (29)
and ReM = 〈csH〉/ηnum. �tav (second col-
umn) is the time interval over which time
averaging was performed.

Model �tav 〈ηnum〉 〈ReM〉

gbl-lr 12–31 1.0 × 10−4 770
gbl-sr 12–31 5.8 × 10−5 1328
gbl-hr 12–31 3.6 × 10−5 2139
gbl-lr-la 18–31 5.8 × 10−5 1328
gbl-hr-la 12–31 3.7 × 10−5 2081
gbl-thin 12–31 2.5 × 10−5 1695

significant computational challenge.5 Note that our derived scaling
for numerical resistivity is identical to that found by Simon et al.
(2009) for unstratified net flux shearing-boxes.

Somewhat surprisingly, model gbl-lr-la displays a lower value
for ηnum, and thus higher ReM, than gbl-lr despite the former having
a larger cell aspect ratio. Considering the lower level of turbulent
activity in model gbl-lr-la compared to gbl-lr (see Figs 1 and 8), this
shows that numerical resistivity scales with the turbulent motion
of the magnetic field, i.e. a larger value of |j| causes a larger net
truncation error. In model gbl-lr-la, turbulent activity wanes for
t � 14P orb

30 , and simultaneously the value of ηnum dips (Fig. 10).

5 BO U N DA RY C O N D I T I O N S A N D
C O N V E R G E N C E

The question of convergence in simulation studies of magnetized
accretion disc turbulence has been long-standing (e.g. Hawley et al.
1995, 2011; Stone et al. 1996; Sano et al. 2004; Fromang &
Papaloizou 2007; Guan et al. 2009; Simon et al. 2009; Johansen
et al. 2009; Davis et al. 2010; Sorathia et al. 2012). It is clear that the
development, or initial presence, of large-scale magnetic field com-
ponents is a vital ingredient in enabling convergence with increasing
simulation resolution – see the discussion in the second paragraph
of Section 4. When present, large-scale magnetic fields can replen-
ish low-wavenumber magnetic energy. This is a pre-requisite for
convergence since otherwise the reservoir of magnetic energy on
the largest scales is drained by the turbulent cascading of magnetic
energy to smaller scales. We show in this section that the simula-
tion boundary conditions dictate whether large-scale mean fields
can grow and thereby promote convergence. In doing so, we con-
sider four different classes of simulation: (1) unstratified shearing
boxes; (2) stratified shearing boxes; (3) global, stratified discs and
(4) global, unstratified discs. In the simplest case – the unstratified
shearing-box with periodic boundary conditions – mean radial and
vertical fields cannot readily evolve. When stratification is intro-
duced, the associated interface between the disc body and corona
relaxes the constraint on mean radial field growth such that an α−�

dynamo can operate effectively. In global models, mean fields grow
relatively quickly, enabling large-scale dynamo activity and mag-
netic energy replenishment. A key result of this analysis is that
lower simulation resolution is required in stratified global models
compared to shearing-boxes because the large-scale radial gradi-
ents enabled by open radial boundaries permit a larger magnitude

5 This may, however, be alleviated using an orbital advection/FARGO
scheme (e.g. Sorathia et al. 2012; Mignone et al. 2012).
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contribution to the creation of magnetic energy from the Lorentz
force terms. Thus, convergence is attained at lower resolutions in
global models than in shearing-boxes.

5.1 The magnetic energy balance in accretion disc turbulence

Irrespective of the specific setup (unstratified/stratified shearing-
box, global simulation) numerical simulations of magnetorotational
turbulence exhibit common features. During the early phases of sim-
ulation evolution, the MRI develops and the subsequent magnetic
field amplification causes a sharp rise in the magnetic energy, 〈uB〉.
Magnetic energy built-up during the initial transient growth phase
supports optimal MRI growth and turbulent driving, which in-turn
dissipates magnetic energy via the resistivity and the current density,
ji = [∇ × B]i. Magnetic energy subsides, and a state is approached
where magnetic field production and turbulent dissipation come into
balance. This latter stage is the QSS.

Informed by the analysis in Section 4, we write the steady-state
magnetic energy evolution equation as (see equation (36):

U̇B = CLor + AMS + Dnum ≈ 0, (43)

where the separate Lorentz and magnetic stress terms for rotational
and turbulent contributions are combined in the following terms:

CLor = −
∫

vi

∂MB
ij

∂xj

dV = −
∫

viF
L
i dV , (44)

AMS =
∮

MB
ij vjnidS, (45)

where vi is the total (rotational plus turbulent) velocity, MB
ij is the

Maxwell stress tensor and F L
i the Lorentz force. From Section

4.1, we have Dnum ≈ −ηnum

∫ |j |2dV , so that equation (43) for the
magnetic energy balance now reads∮

viM
B
ij nj dS −

∫
vi

∂MB
ij

∂xj

dV ≈ ηnum

∫
|j |2dV . (46)

Equation (46) states that the achievement of a QSS requires the rate
of work done on the surfaces of the control volume by Maxwell
stresses, and by Lorentz forces within the volume, to be balanced
by dissipation. Magnetic field saturation and the QSS are solutions
to equation (46).

5.2 Integrated form of the induction equation

In our analysis below, the interplay between the induction equation
and the boundary conditions also plays an important role. We begin
with the induction equation,

∂Bi

∂t
= ∂

∂xj

(viBj − Bjvi) + ηnum∇2Bi, (47)

where a numerical resistive term is included for consistency with the
magnetic energy balance equation (46). Integrating equation (47)
over a control volume, V, with bounding surface S, we have

∂

∂t

∫
Bi dV =

∮ (
viBj − Bivj + ηnum

∂Bi

∂xj

)
dSj , (48)

where dSj is the element of surface area and we have assumed ηnum

to be approximately spatially constant.
The surface S bounding the control volume as well as the

boundary conditions on S take several different forms depending

upon the simulation – stratified/unstratified shearing-box, strati-
fied/unstratified global disc. However, in general, we can use the
coordinate convention introduced for shearing boxes (Hawley et al.
1995), adapting the mathematical analysis in each of the different
cases. Therefore, the coordinates x, y and z correspond to the radial,
azimuthal and vertical directions in the control volume, respec-
tively. The surface integral then involves three separate integrals
over the x, y and z faces, which we denote by x = x1, x2, y = y1, y2

and z = z1, z2, respectively. In our representation of the integrated
induction equation, we introduce the resistive flux,

F res
i =

∮
S

ηnum
∂Bi

∂xj

dSj . (49)

This represents a diffusion of magnetic field, resulting from resistive
effects through the bounding surface S. The integrated induction
equation becomes for each coordinate:

∂

∂t

∫
BxdV = F res

x +
∫

y2

(
vxBy − vyBx

)
dSy

−
∫

y1

(
vxBy − vyBx

)
dSy

+
∫

z2

(vxBz − vzBx) dSz

−
∫

z1

(vxBz − vzBx) dSz, (50)

∂

∂t

∫
BydV = F res

y +
∫

x2

(
vyBx − vxBy

)
dSx

−
∫

x1

(
vyBx − vxBy

)
dSx

+
∫

z2

(
vyBz − vzBy

)
dSz

−
∫

z1

(
vyBz − vzBy

)
dSz, (51)

∂

∂t

∫
BzdV = F res

z +
∫

x2

(vzBx − vxBz) dSx

−
∫

x1

(vzBx − vxBz) dSx

+
∫

y2

(
vzBy − vyBz

)
dSy

−
∫

y1

(
vzBy − vyBz

)
dSy. (52)

The surface integrals in equations (50)–(52) show the influence
of the velocity and magnetic field values at the boundaries on the
volume integrated field within the control volume.

5.3 Dependence of convergence on boundary conditions
and magnetic field configuration

In the following sections, we utilize our description of the mag-
netic energy balance combined with inferences from the induction
equation to describe how the convergence properties of simula-
tions with different numerical setups can be readily understood in
terms of the respective boundary conditions and net magnetic field
configuration.
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5.3.1 Unstratified shearing-box

In this case, the model is a periodic box with background shear
applied via source terms in the momentum equation. The shearing-
box method is used to represent a small patch of an accretion disc
in a Cartesian coordinate system such that x, y and z correspond
to the radial, azimuthal and vertical directions, respectively; the
corresponding lengths of each side of the box are Lx, Ly and Lz

(see Hawley et al. 1995, for further details). The boundaries of the
control volume in this setup are the boundaries of the computational
domain. For an unstratified shearing-box, the following shearing-
periodic boundary conditions are applied in the radial (x), azimuthal
(y) and vertical (z) directions for all dynamical variables f(x, y, z)
except the azimuthal velocity. Let q = d ln �/d ln R be the shear
parameter (=3/2 for a Keplerian disc), then the x-, y- and z-boundary
conditions are

f (x + Lx, y, z) = f (x, y + q�Lxt, z), (53)

f (x, y + Ly, z) = f (x, y, z), (54)

f (x, y, z + Lz) = f (x, y, z). (55)

The exception is the azimuthal velocity, which satisfies the above
y- and z-boundary conditions but whose x-boundary condition is

vy(x + Lx, y, z) = vy(x, y + q�Lxt, z) + q�Lx. (56)

Applying these boundary conditions to equation (46), and noting
that viBi ≈ Byvy, we have

− q�Lx

∫
x1

BxBy dSx + CLor ≈ ηnum

∫
|j |2dV , (57)

where, as noted, x1 refers to the inner radial boundary and dSx

is the corresponding element of surface area. Furthermore, not-
ing that structures are typically elongated in the y-direction, then
∂/∂y � ∂/∂x or ∂/∂z, and retaining the largest terms (those linear
in vy or By), one finds

−q�Lx

∫
x1

BxBy dSx −
∫

vyBx

∂By

∂x
dV −

∫
vyBz

∂By

∂z
dV

≈ ηnum

∫
|j |2dV . (58)

The crucial feature of equation (58) is that magnetic energy is
produced by a combination of the x−y component of the Maxwell
stress at the radial boundary and Lorentz forces doing work within
the volume; the Lorentz forces depend on the radial and vertical
field components as well as the radial and vertical gradient in By.
However, the contributions from the second and third terms on the
LHS of equation (58) are negligible on large scales if there is zero
net radial and vertical magnetic field, and/or no radial or vertical
gradient in By.

We now consider the implications of the induction equation for
the large-scale radial and vertical magnetic fields. Inserting the
shearing-periodic boundary conditions (53)–(56) into the integrated
induction equations (50)–(52), we obtain

∂

∂t

∫
BxdV = F res

x , (59)

∂

∂t

∫
BydV = F res

y − q�Lx

∫
in

BxdSx, (60)

∂

∂t

∫
BzdV = F res

z . (61)

Equation (60) for the azimuthal field shows that it evolves not only
as a result of resistive diffusion but also, and more importantly,
as a result of the combined action of velocity shear and the radial
field. However, equation (59) for the integrated radial field and
equation (61) for the vertical field show that these components
evolve solely under the action of resistive diffusion and there is no
influence from the boundary values of the velocity combined with
existing field components. If the net fluxes associated with Bx or Bz

are initially zero and start to build up within the volume, then the
diffusion terms will act to dissipate these fluxes and they will remain
at near zero levels. Hence, initially zero net radial and vertical fields
do not develop significant components on the largest scale in the
box. On the other hand, a net flux vertical field prevails on the time-
scale of the simulation, and will maintain a component on the largest
realizable scale in the simulation domain. This is notwithstanding
the effect of diffusion since maintaining a non-zero boundary value
of Bz minimizes diffusion of Bz out of the volume as a result of the
gradient in Bz being close to zero.

Since magnetorotational turbulence extracts energy from the
largest scales and drives it towards the smallest scales (Fromang
& Papaloizou 2007; Johansen et al. 2009; Lesur & Longaretti
2011), the preservation of a net vertical field fixes the injection
of magnetic energy at the scale of the box, thus replenishing the
low-wavenumber end of the magnetic energy power spectrum. In
contrast, in a zero net flux, unstratified shearing-box, the finite reser-
voir of magnetic energy at the low-wavenumber end of the scale is
depleted by turbulent driving.

Achieving convergence is, therefore, related to the presence of
magnetic energy injection by Lorentz forces on the largest realiz-
able scales and correspondingly the existence of large-scale vertical
and/or radial field on those scales. Our analysis explains the results
in Simon et al. (2009) who compared zero net flux and net flux
simulations. They demonstrated that energy injection – represented
by the Fourier space analogue of our shear term, Crot

sh – continues to
rise as one tends towards the largest scales in the box in the case of
net flux simulations, whereas it plateaus for the zero net flux sim-
ulations. This indicates that in evolved zero net flux turbulence (in
an unstratified shearing-box), magnetic energy is not replenished
effectively on the largest scales, and this is also consistent with the
lack of a large-scale dynamo (Vishniac 2009; Bodo et al. 2011;
Käpylä & Korpi 2011).

The above analysis also relates to another well-studied prob-
lem within the literature, namely the origin of the lack of
convergence with increasing resolution in unstratified, zero net
flux shearing-box simulations (e.g. Fromang & Papaloizou 2007;
Pessah, Chan & Psaltis 2007; Regev & Umurhan 2008; Vish-
niac 2009; Bodo et al. 2011; Käpylä & Korpi 2011). As we have
shown above, unstratified, zero net flux shearing-box simulations
with periodic boundary conditions render the Lorentz force term
ineffective at injecting magnetic energy, and thus a large-scale
mean field cannot develop. Hence, when a QSS with turbulent
transport of magnetic energy from larger to smaller scales estab-
lishes, it must suffice with the largest scale field available: A small-
scale dynamo operates, for which the stress scales proportionately
to the resistivity (Vishniac 2009; Bodo et al. 2011). Commenc-
ing the simulation with a net radial/vertical field (Hawley et al.
1995; Sano et al. 2004; Guan et al. 2009; Simon et al. 2009), or
adopting alternative boundary conditions which permit the develop-
ment of mean fields within a few orbital periods (e.g. vertical field
boundary conditions Käpylä & Korpi 2011), enables convergence.
Our above analysis provides insight into why these strategies are
successful.
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5.3.2 Stratified shearing-box:

We now consider stratified shearing-box simulations in which the
vertical component of gravity is included. In the context of the
current analysis, the results of zero net flux simulations by Davis
et al. (2010) and Oishi & Mac Low (2011) are useful as periodicity
is applied at the boundaries of the computational domain (including
the vertical boundary at |z| = 2H), in common with the unstratified
simulations discussed in Section 5.3.1. However, unlike the zero net
flux unstratified shearing-boxes described above, the Davis et al.
(2010) models converge with increasing resolution. The crucial
difference is that stratification provides a means for the disc to
repartition magnetic flux so that the disc body can overcome the
magnetic flux constraint and generate large-scale magnetic fields. In
essence, stratification introduces an internal open boundary between
the disc body and the coronal region. From the results presented in
Davis et al. (2010), we infer this open boundary to lie at |z1, 2|

 1 − 1.5H, which we adopt in the following analysis. With the
boundaries z = z1 and z = z2 now not constrained to be periodic,
the integrated induction equations are

∂

∂t

∫
BxdV = F res

x +
∫

z2

vxBz dSz −
∫

z1

vxBz dSz

−
∫

z2

Bxvz dSz +
∫

z1

Bxvz dSz, (62)

∂

∂t

∫
By dV = F res

y − q�Lx

∫
x1

Bx dSx

+
∫

z2

vyBz dSz −
∫

z1

vyBz dSz

−
∫

z2

Byvz dSz +
∫

z1

Byvz dSz, (63)

∂

∂t

∫
Bz dV = F res

z . (64)

The non-periodic boundary conditions on the faces z = z1 and z2

introduce additional driving terms into the radial equation involving
the terms vxBz and Bxvz. Given the zero net flux condition, these
terms are important if the fluctuations in vx and Bz or Bx and vz

are correlated. If this is the case, then equation (62) opens up the
possibility of net radial field development and an α−� dynamo.

Considering the magnetic energy equation, we apply periodic
boundaries in the azimuthal and radial directions and an open ver-
tical boundary condition to equation (46), and retain only the dom-
inant terms, to obtain

−q�Lx

∫
x1

BxBy dSx +
∫

z2

vyByBz dSz −
∫

z1

vyByBz dSz

−
∫

vyBz

∂By

∂z
dV −

∫
vyBx

∂By

∂x
dV ≈ ηnum

∫
|j |2dV , (65)

where the additional term compared to the energy equation for
an unstratified disc, equation (58), arises from the work done on
the disc–corona vertical boundary by Maxwell stresses. Despite
the presence of the disc–corona interface, a large-scale vertical
magnetic field does not develop (see equation 64). Thus, the second,
third and fourth terms on the LHS of equation (65) are negligible.
We are left with

−q�Lx

∫
x1

BxBydSx −
∫

vyBx

∂By

∂x
dV ≈ ηnum

∫
|j |2dV . (66)

We conjecture that the Davis et al. simulations converge due to the
terms involving Bx and By on the LHS of equation (66), where the
introduction of stratification permits the development of a large-
scale radial magnetic field which combines with the azimuthal field
to enable an α−� dynamo to operate. As the simulation resolution
is increased, the resolution of MRI modes improves. At a criti-
cal resolution, the most unstable wavelength becomes resolved and
a further increase in resolution ceases to provide additional MRI
growth (because wavelengths shorter than the most unstable mode
are stable; Balbus & Hawley 1992, 1998). The contribution to the
power input from Maxwell stresses and Lorentz forces (the first and
second terms on the LHS of equation 66) asymptote towards con-
stant values as radial and azimuthal MRI mode growth converges.
We note that the above argument is consistent with the results of
Oishi & Mac Low (2011), as the presence of a disc–corona interface
relaxes the helicity conservation constraint for dynamo quenching.

5.3.3 Global stratified disc simulation

In global stratified disc models, such as the ones we have de-
scribed in this paper, periodic boundary conditions are applied
in the azimuthal direction and the radial and vertical boundaries
of the disc body are open. Assuming symmetry about the mid-
plane, one may take the vertical surfaces to be antiperiodic. The
control volume in our global stratified disc simulations is, in
spherical polars, 10 ≤ r ≤ 30, θ2H/R < θ − π/2 < θ2H/R , where
θ2H/R = tan −1(2〈H/R〉), and 0 ≤ φ ≤ π/2. The magnetic energy
equation for this control volume, which follows from applying ap-
propriate boundary conditions to the magnetic energy equation (46)
and retaining the dominant terms, is∫

r2

BrBφvφdSr −
∫

r1

BrBφvφdSr − 2
∫

θ1

BθBφvφdSθ

+ CLor = ηnum

∫
|j |2dV , (67)

where the element of volume, dV = r2 sin θ dr dθ dφ, the surface
element orthogonal to θ = constant is dSθ = r sin θ dr dφ, and the
surface element orthogonal to r = constant is dSr = r2 dθ dφ. As
noted in the last paragraph of Section 4.1, the rate of work done by
Maxwell stresses on the inner radial boundary is far greater than
that done on the outer radial and vertical (θ -direction) boundaries,
so that the second term on the LHS of equation (67) dominates
the first and third terms. Also, the largest contributor to CLor is∫

vφBr (∂Bφ/∂r)dV . Hence,

−
∫

r1

BrBφvφ dSr −
∫

vφBr

∂Bφ

∂r
dV 
 ηnum

∫
|j |2dV . (68)

Note the similarity of the above equation with that governing the
stratified shearing-box simulations (equation 66). The distinct dif-
ference is in the magnitude of the terms on the LHS, which depend
on Br, Bφ , and the radial gradient of Bφ . Similar to the stratified
shearing-box, for magnetic energy production and dissipation to
converge, the growth of Br and Bφ must be well resolved. In con-
trast, however, because of the large-scale radial gradient in Bφ which
is present in a global model (see, e.g., fig. 12 of Flock et al. 2011)
but which is suppressed by periodic radial boundary conditions in a
shearing-box, the second term is larger in a global model. This term
is appreciable in magnitude for a global disc with open radial and
vertical boundaries as a result of the development of a significant
net radial field. We can indicate how this arises by considering the
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integrated induction equation for the radial field, this time in spheri-
cal polar coordinates, with periodic azimuthal boundary conditions,
viz.,

∂

∂t

∫
Br dV =

∫
θ2

(vrBθ − vθBr ) dSθ −
∫

θ1

(vrBθ − vθBr ) dSθ

≈ −2
∫

θ1

(vrBθ − vθBr ) dSθ . (69)

In this equation, we have omitted the resistive diffusive terms in
order to concentrate on the driving terms for Br and we have made
use of the approximate antisymmetry of the θ = θ1 and θ = θ2

surfaces.
Returning to the implications for the magnetic energy equation,

we note that since periodicity is not applied to Maxwell stresses do-
ing work on the radial boundaries in a global model, they contribute
more power. Therefore, in a global model, Lorentz forces within the
volume and Maxwell stresses at the boundaries of the disc inject
more power at a lower resolutions than they do in a shearing-box.
We emphasize that this is the result of radially periodic boundary
conditions. Thus, keeping the cell aspect ratio constant and pro-
gressively increasing simulation resolution as we have done with
models gbl-lr, gbl-sr and gbl-hr, and as Davis et al. (2010) did
with their stratified shearing-box simulations, one should achieve
apparent convergence in 〈αP〉 at lower simulation resolutions (i.e.
cells/H in the vertical direction) for global disc simulations than
for stratified shearing-box simulations; Davis et al. (2010) found
convergence at 64–128 cells/H in the vertical direction, whereas we
find convergence at ∼27 cells/H in the vertical direction (see Tables
1 and 2).

Comparing the magnitude of the surface integral terms on the
LHS of equations (66) and (68), for the magnetic energy of the
unstratified shearing-box and global stratified disc, respectively, we
find that | ∫

r1
BrBφvφdSr | is greater than |q�Lx

∫
x1

BxBydSx | by a
factor of a few tens. Hence, a global disc more readily supports a
high 〈αP〉 because the radial boundary condition allows more power
to be delivered to the disc body to counteract the removal of en-
ergy by turbulent dissipation (ηnum

∫ |j |2dV ). Stating this in a more
general context, periodic boundary conditions on the magnetic field
prevent the establishment of large-scale gradients in the Maxwell
stresses, restricting the power that can be delivered to the disc by
Lorentz forces and surface stresses.

We note, however, that in the absence of an explicit resistivity,
simulations performed at different resolutions will, at some late
time, diverge. This is because in the QSS the disc is continuing to
evolve on the (slow) resistive time-scale. If one relies on numerical
resistivity, this time-scale is dictated by ηnum. We anticipate that
as global disc simulations integrated over many hundreds of orbits
become more feasible, this result will be realized. In fact, the results
of Sorathia et al. (2012) already show this for unstratified global
disc simulations.

5.3.4 Global unstratified disc simulation

We complete this analysis by considering the global unstratified disc
models presented by Sorathia et al. (2012) showing what differences
the vertical periodic boundary conditions make in that case. We have
presented in equations (50)–(52) the volume-integrated induction
equations appropriate for Cartesian shearing boxes. Sorathia et al.
(2012) employ cylindrical polar coordinates R, φ, z so that we
present the following induction equations in that coordinate system.
We are interested in the driving terms for these components so

that we omit the diffusive terms in these equations, which have a
complex form and do not add anything to the discussion.

The volume-integrated equations, assuming periodicity in the
azimuthal direction are

∂

∂t

∫
BR dV =

∫
z2

(vRBz − vzBR) dSz −
∫

z1

(vRBz − vzBR) dSz,

(70)

∂

∂t

∫
Bφ

R
dV =

∫
z2

(
vφ

R
Bz − vz

Bφ

R

)
dSz

−
∫

z1

(
vφ

R
Bz − vz

Bφ

R

)
dSz

+
∫

R2

(
vφ

R
BR − vR

Bφ

R

)
dSR

−
∫

R1

(
vφ

R
BR − vR

Bφ

R

)
dSR, (71)

∂

∂t

∫
Bz dV =

∫
R2

(vzBR − vRBz) dSR −
∫

R1

(vzBR − vRBz) dSR,

(72)

where the element of volume dV = RdR dφ dz and the respective
elements of area are dSR = R dφ dz (orthogonal to R = constant)
and dSz = R dR dφ (orthogonal to z = constant). Sorathia et al.
(2012) use open radial boundaries and periodic boundary condi-
tions in the vertical and azimuthal direction. Sorathia et al. (2012)
use open radial boundaries and periodic boundary conditions in
the vertical and azimuthal direction. Since the radial boundaries
are open, equation (72) shows that a mean vertical field can grow
irrespective of whether it is initially zero. However, with a peri-
odic z-boundary, the RHS of equation (70) is identically zero and a
large-scale radial field cannot develop.

Hence, in this case, the magnetic energy equation with only dom-
inant terms retained reads

−
∫

R1

BRBφvφdSR −
∫

vφBR

∂Bφ

∂R
dV −

∫
vφBz

∂Bφ

∂z
dV


 ηnum

∫
|j |2dV , (73)

where we have adopted cylindrical coordinates (R, φ, z) for con-
sistency with the work of Sorathia et al. (2012). The second and
third terms in this equation are likely to be small compared to the
first (and will contribute little to maintaining magnetic power on the
largest scales), because there is no large-scale radial field, and be-
cause the disc is unstratified so that there is no appreciable vertical
gradient in Bφ . Hence, equation (74) simplifies to

−
∫

R1

BRBφvφdSR 
 ηnum

∫
|j |2dV , (74)

where the remaining Maxwell stress term provides the power input
on the largest scales. Note that this term does not require a large-
scale net/mean radial field, and has a considerable magnitude purely
due to open radial boundary conditions causing a contrast in surface
integrals at opposing boundaries. The apparent convergence in 〈αP〉
present in the results of Sorathia et al. (2012) therefore hinges
on adequate resolution of the radial and azimuthal magnetic field.
Hence, one may anticipate that stratified and unstratified global
models will converge at the same resolution. This is apparent from
a comparison of our results with those of Sorathia et al. (2012).
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Figure 11. Volume-averaged magnetic field components for model gbl-
sr. Note that 〈Br〉 and 〈Bθ 〉 have been multiplied by factors of 10 and 40,
respectively, to aid comparison against the curve for 〈Bφ〉.

It is noteworthy that although stratified and unstratified global
models do appear to converge at similar resolutions, this may be
facilitated by different mechanisms in each case. Essentially, be-
cause a mean radial field cannot develop in an unstratified global
model, maintenance of large-scale magnetic energy is not facilitated
by a large-scale α−� dynamo, but must be aided by some other
mechanism – see, for example, Lesur & Ogilvie (2008). Hence,
by construction, periodic vertical boundary conditions place more
demand on the azimuthal and vertical fields to sustain turbulent en-
ergy on the largest scales. Considering that astrophysical discs are
stratified, this seems an unrealistic approximation to a real disc.

5.4 The presence of a dynamo

The time variability of the mean magnetic field components
(Fig. 11) is indicative of an α−� dynamo in our stratified global
disc models. Furthermore, mean radial and vertical fields develop
within the first few orbital periods of the simulation. The radial and
azimuthal mean magnetic fields show anticorrelated oscillations,
the period of which is not obvious from Fig. 11. This may be the re-
sult of averaging over a wide range of radii (O’Neill et al. 2011), or
could be due to additional terms contributing to the evolution of the
mean fields when the boundaries of the disc body are open – see the
integrated induction equations in Section 5.3.3. A connection be-
tween the vertical magnetic field and the radial and azimuthal fields
is less apparent, although there is a faint suggestion of oscillations
in 〈Bθ 〉 with a period of the order of ∼15P orb

30 .

6 C O N C L U S I O N S

Global three-dimensional simulations of magnetorotationally tur-
bulent discs have been presented to investigate convergence with
increasing simulation resolution, magnetic energy and quasi-steady
self-sustaining turbulence. A primary result of this work is conver-
gence with increasing resolution at an α-parameter, 〈αP〉 = 0.04,
occurring at a resolution of the order of 12–51 cells/H in radius, 27
cells/H in the vertical direction and 12.5 cells/H in the azimuthal
direction.

A control volume analysis applied to the body of the disc reveals
the dominant magnetic energy production to be the result of the
combination of Maxwell stresses and shear in the mean disc rota-
tion. Magnetic energy is primarily removed by dissipation, with a

negligible amount of energy being advected out of the disc body
in either the radial or vertical directions. Compressibility, or to be
more exact expansion, also contributes to the removal of magnetic
energy, but to a far lesser extent than dissipation. The control vol-
ume analysis also allows the numerical resistivity of the simulation
code to be evaluated. The results reveal that sustained, slowly di-
minishing turbulence can operate at ReM � 3000, in contrast to the
conclusions of Fleming et al. (2000), Oishi & Mac Low (2011) and
Flock et al. (2012b) that magnetorotational turbulence should cease
to function effectively at such values of ReM. This may be indicating
that an effective large-scale dynamo can operate at low magnetic
Reynolds number in global discs.

The convergence with resolution found from our global simula-
tions occurs at roughly a factor of 3 lower resolution than found
for stratified shearing-box simulations by Davis et al. (2010) (see
also Shi et al. 2010; Hawley et al. 2011, and references therein).
We have shown how this result, as well as the convergence prop-
erties of unstratified shearing-boxes (Fromang & Papaloizou 2007;
Guan et al. 2009; Simon et al. 2009) and global discs (Hawley
et al. 2011; Sorathia et al. 2012) can be understood in terms of
balancing creation and dissipation of magnetic energy subject to
boundary conditions and magnetic field configuration. In particu-
lar, using periodic boundary conditions in the radial direction (as
in shearing-box simulations) reduces the magnitude of a Lorentz
force term which depends on Br and the radial gradient in Bφ . This
term significantly contributes to magnetic energy injection, and in
global models (which use open radial boundaries) is larger due to
the presence of large-scale radial gradients. Hence, this term re-
quires lower simulation resolution to achieve the same power in a
global model. Our results highlight important differences between
shearing-boxes and global discs which indicate the importance of
basing future deductions on stratified global models.

In closing, we note that the results of this paper concern global
discs with a small net vertical magnetic field in the turbulent state.
A growing number of shearing-box studies are engaging in the
challenging task of modelling net flux magnetic fields in stratified
discs (Suzuki & Inutsuka 2009; Suzuki, Muto & Inutsuka 2010;
Moll 2012; Bai & Stone 2013; Fromang et al. 2013; Lesur, Ferreira
& Ogilvie 2013). Therefore, re-visiting the analysis in this paper in
the context of net vertical flux fields would be a useful avenue for
future work. Furthermore, the control volume analysis we have used
to derive the numerical resistivity could be applied to recent orbital
advection/FARGO schemes (e.g. Johansen et al. 2009; Sorathia et al.
2010; Stone & Gardiner 2010; Mignone et al. 2012) to quantify their
dissipation properties.
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Arlt R., Rüdiger G., 2001, A&A, 374, 1035
Armitage P. J., Reynolds C. S., Chiang J., 2001, ApJ, 548, 868
Baddour N., 2010, J. Opt. Soc. Am. A, 27, 2144
Bai X.-N., Stone J. M., 2013, ApJ, 767, 30
Balbus S. A., Hawley J. F., 1992, ApJ, 400, 610

 at T
he A

ustralian N
ational U

niversity on D
ecem

ber 20, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


Global MHD discs I 2297

Balbus S. A., Hawley J. F., 1998, Rev. Mod. Phys., 70, 1
Balbus S. A., Papaloizou J. C. B., 1999, ApJ, 521, 650
Beckwith K., Hawley J. F., Krolik J. H., 2008, ApJ, 678, 1180
Beckwith K., Armitage P. J., Simon J. B., 2011, MNRAS, 416, 361
Blackman E. G., Penna R. F., Varnière P., 2008, New Astron., 13, 244
Bodo G., Cattaneo F., Ferrari A., Mignone A., Rossi P., 2011, ApJ, 739, 82
Brandenburg A., 2005, Astron. Nachr., 326, 787
Brandenburg A., 2009, ApJ, 697, 1206
Brandenburg A., Nordlund A., Stein R. F., Torkelsson U., 1995, ApJ, 446,

741
Colella P., Woodward P. R., 1984, J. Comput. Phys., 54, 174
Davis S. W., Stone J. M., Pessah M. E., 2010, ApJ, 713, 52
Driscoll J. R., Healy D. M., 1994, Adv. Appl. Math., 15, 202
Fleming T. P., Stone J. M., Hawley J. F., 2000, ApJ, 530, 464
Flock M., Dzyurkevich N., Klahr H., Turner N. J., Henning T., 2011, ApJ,

735, 122
Flock M., Dzyurkevich N., Klahr H., Turner N., Henning T., 2012a, ApJ,

744, 144
Flock M., Henning T., Klahr H., 2012b, ApJ, 761, 95
Fromang S., 2010, A&A, 514, L5
Fromang S., Nelson R. P., 2006, A&A, 457, 343
Fromang S., Nelson R. P., 2009, A&A, 496, 597
Fromang S., Papaloizou J., 2007, A&A, 476, 1113
Fromang S., Papaloizou J., Lesur G., Heinemann T., 2007, A&A, 476, 1123
Fromang S., Latter H. N., Lesur G., Ogilvie G. I., 2013, A&A, 552, 71
Gardiner T. A., Stone J. M., 2008, J. Comput. Phys., 227, 4123
Gressel O., 2010, MNRAS, 405, 41
Guan X., Gammie C. F., 2011, ApJ, 728, 130
Guan X., Gammie C. F., Simon J. B., Johnson B. M., 2009, ApJ, 694, 1010
Hawley J. F., 2000, ApJ, 528, 462
Hawley J. F., 2001, ApJ, 554, 534
Hawley J. F., Krolik J. H., 2001, ApJ, 548, 348
Hawley J. F., Gammie C. F., Balbus S. A., 1995, ApJ, 440, 742
Hawley J. F., Guan X., Krolik J. H., 2011, ApJ, 738, 84
Healy D. M., Rockmore D., Kostelec P., Moore S., 2003, J. Fourier Anal.

Appl., 9, 341
Heinemann T., Papaloizou J. C. B., 2009, MNRAS, 397, 64
Hirose S., Krolik J. H., Stone J. M., 2006, ApJ, 640, 901
Johansen A., Youdin A., Klahr H., 2009, ApJ, 697, 1269
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A P P E N D I X A : FO U R I E R T R A N S F O R M
I N S P H E R I C A L C O O R D I NAT E S

The simulations performed in this work use spherical polar coor-
dinates, so for consistency it is best to also perform the Fourier
transform in this coordinate system. We adopt spherical polars in
real space (r, θ , φ) and in Fourier space (k, χ , ψ). That is,

x = r sin θ cos φ, kx = k sin χ cos ψ,

y = r sin θ sin φ, ky = k sin χ sin ψ,

z = r cos θ, kz = k cos χ.

(A1)

The following treatment is based on Baddour (2010) with minor
differences (primarily the notation of angles and the sign of k · x in
the forward and inverse transforms).

A1 3D Fourier transform

The Fourier transform of a function f (x) = f (r, θ, φ) is

F (k) = F (k, χ,ψ)

=
∫ 2π

0

∫ π

0

∫ ∞

0
f (r, θ, φ) eik·xr2 sin θ dr dθ dφ. (A2)

Note that we use eik·x here since this is consistent with many defi-
nitions of the Fourier transform.

To proceed, both eik·x and f are expanded in terms of spherical
harmonics, which are defined by

Ym
l (θ, φ) =

√
(2l + 1)(l − m)!

4π(l + m)!
P m

l (cos θ ) eimφ, (A3)

where the P m
l (cos θ ) are Legendre polynomials.

Let jl(z) be the spherical Bessel function of order l, then, denoting
complex conjugates by *,

eik·x = 4π

∞∑
l=0

l∑
m=−l

il jl(kr)Ym
l

∗(θ, φ)Ym
l (χ,ψ) (A4)
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and

f (r, θ, φ) =
∞∑
l=0

l∑
m=−l

f m
l (r)Ym

l (θ, φ), (A5)

where

f m
l (r) =

∫ 2π

0

∫ π

0
f (r, θ, φ) Ym

l
∗(θ, φ) sin θ dθ dφ, (A6)

are the spherical harmonic coefficients of f(r, θ , φ).
With these expressions, the Fourier transform is

F (k, χ, ψ) = 4π

∫ 2π

0

∫ π

0

∫ ∞

0

{ ∞∑
l=0

l∑
m=−l

f m
l (r)Ym

l (θ, φ)

×
∞∑

l′=0

l′∑
m′=−l′

il′jl′ (kr)Ym′
l′

∗
(θ, φ)Ym′

l′ (χ,ψ)

}

× r2 sin θ dθ dφ. (A7)

Using the orthogonality property of the spherical harmonics:∫ 2π

0

∫ π

0
Ym

l (θ, φ) Ym′
l′

∗
(θ, φ) sin θ dθ dφ = δll′ δmm′ , (A8)

we obtain,

F (k, χ, ψ) = 4π

∞∑
l=0

l∑
m=−l

Fm
l (k) Ym

l (χ,ψ), (A9)

where Fm
l (k) =

∫ ∞

0
ilr2jl(kr)f m

l (r) dr, (A10)

and the spherical harmonic coefficients f m
l (r) are given by equation

(A6). The steps in evaluating the Fourier transform are as follows.

(i) Evaluate equation (A6) for the spherical harmonic transform,
f (r, θ, φ) ⇒ f m

l (r).
(ii) Perform a spherical Bessel transform using equation (A10),

f m
l (r) ⇒ Fm

l (k).
(iii) The Fm

l (k) are the complete set of Fourier coefficients and
can be used to compute an angle averaged spectrum (Section A2).
One may perform an inverse spherical harmonic transform to ac-
quire Fm

l (k) ⇒ F (k, χ,ψ) using equation (A9).

For step (i) above, we use the publicly available S2KIT package6

which includes functions for performing spherical harmonic trans-
forms on the two-sphere using a combination of fast-Fourier trans-
forms and fast-cosine transforms (to tackle the Legendre polynomi-
als) and is based on the seminal work by Driscoll & Healy (1994)
(see also Healy et al. 2003). The spherical Bessel transform is com-
puted using numerical quadrature in combination with a truncation
of terms contributing at large order l to improve efficiency (Sec-
tion A3).

A2 Angle-averaged spectrum

In the analysis of turbulence, one often uses the integrated energy
spectrum:

�(k) =
∫ 2π

0

∫ π

0
F (k)F ∗(k)k2 sin χ dχ dψ. (A11)

6 http://www.cs.dartmouth.edu/~geelong/sphere/

Expressing F (k) in terms of the spherical harmonic expansion (A9),
we have

�(k) =
∫ 2π

0

∫ π

0

B∑
l=0

∑
|m|≤l

B∑
p=0

∑
|q|≤p

Fm
l (k)Fq

p
∗(k)

× Ym
l (χ,ψ)Y q

p
∗(χ,ψ) sin χ dχ dψ (A12)

=
B∑

l=0

∑
|m|≤l

Fm
l (k)Fm

l
∗(k), (A13)

with the last equation resulting from the orthogonality of the spher-
ical harmonics (equation A8).

A3 Spherical Bessel functions for large l

Equation (A10), which defines the k-dependence of the Fourier
coefficients, depends upon integration of the spherical harmonic
coefficients with the spherical Bessel functions jl(kr). These have an
interesting behaviour at large l; they are practically zero until kr ∼ l
following which they oscillate rapidly. The oscillatory behaviour
originates from the expression for the spherical Bessel functions in
terms of derivatives of the sinc function, viz.

jn(z) = (−1)nzn

(
1

z

d

dz

)n sin z

z
. (A14)

That jl(kr) ≈ 0 for kr � l follows from the leading term:

jn(z) = 2nn!

(2n + 1)!
zn + Ozn+1. (A15)

For what value of z does jn(z) attain a numerically significant value
of, say, ε ∼ 10−6? Take the logarithm of equation (A15):

ln jn(z) ≈ n ln 2 + n ln z + ln n! − ln(2n + 1)! (A16)

and use Stirling’s asymptotic form for the factorial function:

ln n! ∼ n ln n − n, (A17)

to obtain

ln jn(z) ≈ n ln 2 + n ln z + n ln n

− (2n + 1) ln(2n + 1) + n + 1

= ln ε (A18)

⇒ ln z(ε) ≈ 1

n
ln ε − ln 2 + (2n + 1)

n
ln(2n + 1)

− ln n − n + 1

n
. (A19)

For example, for ε = 10−6 and n = 100, ln z ≈ 4.213 and z = 67.57.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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