We model the northern middle radio lobe of Centaurus A (NGC 5128) as a
buoyant bubble of plasma deposited by an intermittently active jet. The extent
of the rise of the bubble and its morphology imply that the ratio of its
density to that of the surrounding ISM is less than 10^{-2}, consistent with
our knowledge of extragalactic jets and minimal entrainment into the precursor
radio lobe. Using the morphology of the lobe to date the beginning of its rise
through the atmosphere of Centaurus A, we conclude that the bubble has been
rising for approximately 140Myr. This time scale is consistent with that
proposed by Quillen et al. (1993) for the settling of post-merger gas into the
presently observed large scale disk in NGC 5128, suggesting a strong connection
between the delayed re-establishment of radio emission and the merger of NGC
5128 with a small gas-rich galaxy. This suggests a connection, for radio
galaxies in general, between mergers and the delayed onset of radio emission.
In our model, the elongated X-ray emission region discovered by Feigelson et
al. (1981), part of which coincides with the northern middle lobe, is thermal
gas that originates from the ISM below the bubble and that has been uplifted
and compressed. The "large-scale jet" appearing in the radio images of Morganti
et al. (1999) may be the result of the same pressure gradients that cause the
uplift of the thermal gas, acting on much lighter plasma, or may represent a
jet that did not turn off completely when the northern middle lobe started to
buoyantly rise. We propose that the adjacent emission line knots (the "outer
filaments") and star-forming regions result from the disturbance, in particular
the thermal trunk, caused by the bubble moving through the extended atmosphere
of NGC 5128.Comment: 38 pages, 13 figures, submitted to ApJ; a version with higher
resolution figures is available at
http://www.mso.anu.edu.au/~saxton/papers/cena.pd