5 research outputs found
Mass Spectrometry Analysis of Globotriaosylsphingosine and Its Analogues in Dried Blood Spots
Fabry disease (FD) is an X-linked lysosomal storage disorder where impaired α-galactosidase A enzyme activity leads to the intracellular accumulation of undegraded glycosphingolipids, including globotriaosylsphingosine (lyso-Gb3) and related analogues. Lyso-Gb3 and related analogues are useful biomarkers for screening and should be routinely monitored for longitudinal patient evaluation. In recent years, a growing interest has emerged in the analysis of FD biomarkers in dried blood spots (DBSs), considering the several advantages compared to venipuncture as a technique for collecting whole-blood specimens. The focus of this study was to devise and validate a UHPLC-MS/MS method for the analysis of lyso-Gb3 and related analogues in DBSs to facilitate sample collection and shipment to reference laboratories. The assay was devised in conventional DBS collection cards and in Capitainer®B blood collection devices using both capillary and venous blood specimens from 12 healthy controls and 20 patients affected with FD. The measured biomarker concentrations were similar in capillary and venous blood specimens. The hematocrit (Hct) did not affect the correlation between plasma and DBS measurements in our cohort (Hct range: 34.3–52.2%). This UHPLC-MS/MS method using DBS would facilitate high-risk screening and the follow-up and monitoring of patients affected with FD
Mass Spectrometry Analysis of Globotriaosylsphingosine and Its Analogues in Dried Blood Spots
Fabry disease (FD) is an X-linked lysosomal storage disorder where impaired α-galactosidase A enzyme activity leads to the intracellular accumulation of undegraded glycosphingolipids, including globotriaosylsphingosine (lyso-Gb3) and related analogues. Lyso-Gb3 and related analogues are useful biomarkers for screening and should be routinely monitored for longitudinal patient evaluation. In recent years, a growing interest has emerged in the analysis of FD biomarkers in dried blood spots (DBSs), considering the several advantages compared to venipuncture as a technique for collecting whole-blood specimens. The focus of this study was to devise and validate a UHPLC-MS/MS method for the analysis of lyso-Gb3 and related analogues in DBSs to facilitate sample collection and shipment to reference laboratories. The assay was devised in conventional DBS collection cards and in Capitainer®B blood collection devices using both capillary and venous blood specimens from 12 healthy controls and 20 patients affected with FD. The measured biomarker concentrations were similar in capillary and venous blood specimens. The hematocrit (Hct) did not affect the correlation between plasma and DBS measurements in our cohort (Hct range: 34.3–52.2%). This UHPLC-MS/MS method using DBS would facilitate high-risk screening and the follow-up and monitoring of patients affected with FD
Use of a rare disease registry for establishing phenotypic classification of previously unassigned GLA variants: A consensus classification system by a multispecialty Fabry disease genotype-phenotype workgroup
International audienceBackground Fabry disease (α-galactosidase deficiency) is an X-linked genetic disease caused by a variety of pathogenic GLA variants. The phenotypic heterogeneity is considerable, with two major forms, classic and later-onset disease, but adjudication of clinical phenotype is currently lacking for many variants. We aimed to determine consensus phenotypic classification for previously unclassified GLA variants from the GLA-specific fabry-database.org database. Methods A Fabry disease genotype-phenotype workgroup developed a five-stage iterative system based on expert clinical assessment, published literature and clinical evidence of pathogenicity using a 2-point scoring system based on clinical hallmarks of classic disease. Kaplan-Meier (KM) analysis of severe clinical event-free survival was used as final validation. Results were compared with those from web-based disease databases and in silico pathogenicity prediction programmes. Results Final consensus on classifications of 'pathogenic' was achieved for 32 of 33 GLA variants (26 'classic' phenotype, 171 males; 6 'later-onset' phenotype, 57 males). One variant remained of uncertain significance. KM curves were similar for the known fabry-database.org database phenotypes and when workgroup consensus classifications were added, and the curves retained the same separation between 'classic' and 'later-onset' phenotypes. Conclusion The iterative system implemented by a Fabry disease genotype-phenotype workgroup achieved phenotypic classifications for variants that were previously unclassified. Clinical pathogenicity associated with a particular GLA variant defined in affected males appears to have predictive value and also generally correlates with risk for affected females. The newly established classifications can be of benefit to the clinical care of Fabry patients harbouring these variants
Fabry disease biomarkers in patients switched from enzyme-replacement therapy to migalastat oral chaperone therapy
Background: A biomarker profile was evaluated longitudinally in patients with Fabry disease switched from enzyme-replacement therapy (ERT) to migalastat.
Methods: 16 Gb isoforms and eight lyso-Gb analogues were analyzed in plasma and urine by LC-MS/MS at baseline and at three different time points in naive participants and participants switching from either agalsidase α or β to migalastat.
Results: 29 adult participants were recruited internationally (seven centers). The Mainz Severity Score Index and mean biomarker levels remained stable (p ≥ 0.05) over a minimum of 12 months compared with baseline following the treatment switch.
Conclusion: In this cohort of patients with Fabry disease with amenable mutations, in the short term, a switch from ERT to migalastat did not have a marked effect on the average biomarker profile