19 research outputs found

    Brand-specific influenza vaccine effectiveness estimates during 2019/20 season in Europe – Results from the DRIVE EU study platform

    Get PDF
    DRIVE (Development of Robust and Innovative Vaccine Effectiveness) is an IMI funded public–private platform that aims to annually estimate brand-specific influenza vaccine effectiveness (IVE), for public health and regulatory purposes. IVE analyses and reporting are conducted by public partners in the con- sortium. In 2019/20, four primary care-based test-negative design (TND) studies (Austria, England, Italy (n = 2)), eight hospital-based TND studies (Finland, France, Italy, Romania, Spain (n = 4)), and one population- based cohort study (Finland) were conducted. The COVID-19 pandemic affected influenza surveillance in all participating study sites, therefore the study period was truncated on February 29, 2020. Age- stratified (6 m-17y, 18-64y, !65y), confounder-adjusted, site-specific adjusted IVE estimates were calcu- lated and pooled through meta-analysis. Parsimonious confounder-adjustment was performed, adjusting the estimates for age, sex and calendar time. TND studies included 3531 cases (351 vaccinated) and 5546 controls (1415 vaccinated) of all ages. IVE estimates were available for 8/11 brands marketed in Europe in 2019. Most children and adults < 64y were captured in primary care setting and the most frequently observed vaccine brand was Vaxigrip Tetra. The estimate against any influenza for Vaxigrip Tetra in primary care setting was 61% (95%CI 38–77) in children and 32% (95%CI 13–59) in adults up to 64y. Most adults ! 65y were captured in hospital setting and the most frequently observed brand was Fluad, with an estimate of 52% (95%CI 27–68)

    WHO global vaccine safety multi-country collaboration project on safety in pregnancy: Assessing the level of diagnostic certainty using standardized case definitions for perinatal and neonatal outcomes and maternal immunization.

    Get PDF
    Standardized case definitions strengthen post-marketing safety surveillance of new vaccines by improving generated data, interpretation and comparability across surveillance systems. The Global Alignment of Immunization Safety Assessment in Pregnancy (GAIA) project developed standardized case definitions for 21 key obstetric and neonatal terms following the Brighton Collaboration (BC) methodology. In this prospective cohort study, we assessed the applicability of GAIA definitions for maternal immunization exposure and for low birth weight (LBW), preterm birth, small for gestational age (SGA), stillbirth, neonatal death, neonatal infection, and congenital microcephaly. We identified the missing data elements that prevented identified cases and exposures from meeting the case definition (level 1-3 of BC diagnostic certainty). Over a one-year period (2019-2020), all births occurring in 21 sites (mostly secondary and tertiary hospitals) in 6 Low Middle Income Countries and 1 High Income Country were recorded and the 7 perinatal and neonatal outcome cases were identified from routine medical records. Up to 100 cases per outcome were recruited sequentially from each site. Most cases recruited for LBW, preterm birth and neonatal death met the GAIA case definitions. Birth weight, a key parameter for all three outcomes, was routinely recorded at all sites. The definitions for SGA, stillbirth, neonatal infection (particularly meningitis and respiratory infection) and congenital microcephaly were found to be less applicable. The main barrier to obtaining higher levels of diagnostic certainty was the lack of sonographic documentation of gestational age in first or second trimester. The definition for maternal immunization exposure was applicable, however, the highest level of diagnostic certainty was only reached at two sites. Improved documentation of maternal immunization will be important for vaccine safety studies. Following the field-testing of these 8 GAIA definitions, several improvements are suggested that may lead to their easier implementation, increased standardization and hence comparison across studies

    Estimating the loss of lifetime function using flexible parametric relative survival models

    Get PDF
    Abstract Background Within cancer care, dynamic evaluations of the loss in expectation of life provides useful information to patients as well as physicians. The loss of lifetime function yields the conditional loss in expectation of life given survival up to a specific time point. Due to the inevitable censoring in time-to-event data, loss of lifetime estimation requires extrapolation of both the patient and general population survival function. In this context, the accuracy of different extrapolation approaches has not previously been evaluated. Methods The loss of lifetime function was computed by decomposing the all-cause survival function using the relative and general population survival function. To allow extrapolation, the relative survival function was fitted using existing parametric relative survival models. In addition, we introduced a novel mixture cure model suitable for extrapolation. The accuracy of the estimated loss of lifetime function using various extrapolation approaches was assessed in a simulation study and by data from the Danish Cancer Registry where complete follow-up was available. In addition, we illustrated the proposed methodology by analyzing recent data from the Danish Lymphoma Registry. Results No uniformly superior extrapolation method was found, but flexible parametric mixture cure models and flexible parametric relative survival models seemed to be suitable in various scenarios. Conclusion Using extrapolation to estimate the loss of lifetime function requires careful consideration of the relative survival function outside the available follow-up period. We propose extensive sensitivity analyses when estimating the loss of lifetime function

    Estimating the loss of lifetime function using flexible parametric relative survival models

    No full text
    Abstract Background Within cancer care, dynamic evaluations of the loss in expectation of life provides useful information to patients as well as physicians. The loss of lifetime function yields the conditional loss in expectation of life given survival up to a specific time point. Due to the inevitable censoring in time-to-event data, loss of lifetime estimation requires extrapolation of both the patient and general population survival function. In this context, the accuracy of different extrapolation approaches has not previously been evaluated. Methods The loss of lifetime function was computed by decomposing the all-cause survival function using the relative and general population survival function. To allow extrapolation, the relative survival function was fitted using existing parametric relative survival models. In addition, we introduced a novel mixture cure model suitable for extrapolation. The accuracy of the estimated loss of lifetime function using various extrapolation approaches was assessed in a simulation study and by data from the Danish Cancer Registry where complete follow-up was available. In addition, we illustrated the proposed methodology by analyzing recent data from the Danish Lymphoma Registry. Results No uniformly superior extrapolation method was found, but flexible parametric mixture cure models and flexible parametric relative survival models seemed to be suitable in various scenarios. Conclusion Using extrapolation to estimate the loss of lifetime function requires careful consideration of the relative survival function outside the available follow-up period. We propose extensive sensitivity analyses when estimating the loss of lifetime function

    Additional file 1 of Estimating the loss of lifetime function using flexible parametric relative survival models

    No full text
    Supplementary figures. Description of data: Figure S1-S4 displays the extrapolated overall survival for the four cancer types considered in the analysis of data from the Danish Cancer Registry. Figure S5 displays the relative survival of the three lymphoma types considered in â Population-based loss of lifetimeâ section. (DOCX 248 kb
    corecore