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Estimating the loss of lifetime function
using flexible parametric relative survival
models
Lasse H. Jakobsen1,2* , Therese M.-L. Andersson3, Jorne L. Biccler1,2, Tarec C. El-Galaly1,2

and Martin Bøgsted1,2

Abstract

Background: Within cancer care, dynamic evaluations of the loss in expectation of life provides useful information
to patients as well as physicians. The loss of lifetime function yields the conditional loss in expectation of life given
survival up to a specific time point. Due to the inevitable censoring in time-to-event data, loss of lifetime estimation
requires extrapolation of both the patient and general population survival function. In this context, the accuracy of
different extrapolation approaches has not previously been evaluated.

Methods: The loss of lifetime function was computed by decomposing the all-cause survival function using the
relative and general population survival function. To allow extrapolation, the relative survival function was fitted using
existing parametric relative survival models. In addition, we introduced a novel mixture cure model suitable for
extrapolation. The accuracy of the estimated loss of lifetime function using various extrapolation approaches was
assessed in a simulation study and by data from the Danish Cancer Registry where complete follow-up was available.
In addition, we illustrated the proposed methodology by analyzing recent data from the Danish Lymphoma Registry.

Results: No uniformly superior extrapolation method was found, but flexible parametric mixture cure models and
flexible parametric relative survival models seemed to be suitable in various scenarios.

Conclusion: Using extrapolation to estimate the loss of lifetime function requires careful consideration of the relative
survival function outside the available follow-up period. We propose extensive sensitivity analyses when estimating
the loss of lifetime function.

Keywords: Loss of lifetime, Relative survival, Extrapolation, Cancer survival

Background
Dynamic survival prediction is important in cancer care,
where prognostic assessments are given numerous times
during diagnosis, treatment, and post-treatment follow-
up. A popular measure for characterizing the severity of a
disease is the expected amount of lifetime lost due to the
disease as compared to the general population. This mea-
sure is known as the loss in expectation of life and may
be computed as the difference between the area under the
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general population and patient survival curves [1]. The
loss in expectation of life has previously been used to char-
acterize the disease burden within colon cancer and acute
myeloid leukemia [2, 3]. The loss of lifetime function gen-
eralizes this measure by dynamically evaluating the loss
in expectation of life, yielding the conditional number of
years lost due to cancer given survival up to specific time
points.
Due to the occurrence of censoring, computing the

loss of lifetime function typically requires extrapolation of
both the patient and general population survival function.
Generally, extrapolation of survival functions estimated
from censored time-to-event data is challenging since
there is no way to evaluate the extrapolation accuracy and
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even a well-fittedmodel may extrapolate poorly. Nonethe-
less, in order to provide estimates of the long-term effects
of a given treatment, extrapolated survival probabilities
are often required in the analysis of data from clinical
trials [4].
An extensive literature exists on techniques for extrapo-

lating survival functions. Jackson et al. reviewed methods
for incorporating external data, such as register data or
national life tables, to extrapolate survival functions [5].
Such approaches require a quantification of how the sur-
vival in the present patient population and the external
data differ and assumptions about how this will con-
tinue beyond the follow-up. In particular, extrapolation
through the relative survival function has been proposed
for both grouped and individual-level data, which has
demonstrated improved accuracy in comparison to mod-
els for the all-cause survival function [1, 6]. Andersson
et al. examined the accuracy of the loss in expectation
of life estimates calculated by three types of relative sur-
vival models [1]. However, none of these assessments were
conducted for the entire loss of lifetime function.
In the following article, we compute the loss of life-

time function using previously introduced extrapolation
approaches. In addition, a new flexible parametric relative
survival model based on mixture cure models and spline-
based proportional hazards models is introduced [7, 8].
We expand the study of Andersson et al. [1] by evaluating
the accuracy of the entire loss of lifetime function based
on various extrapolation approaches in a simulation study
and in data from the Danish Cancer Registry where com-
plete follow-up was available. In addition, as a clinically
motivated example, the loss of lifetime function is com-
puted for three lymphoma types using recent data from
the Danish Lymphoma Registry.

Methods
Relative survival
The relative survival function is commonly used to
describe the disease-specific (net) survival without requir-
ing cause of death information. Given covariate vector z,
patient population (all-cause) survival function S(t|z), and
general population survival function, S∗(t|z), the relative
survival function is given by

R(t|z) = S(t|z)
S∗(t|z) . (1)

By using the relation between the hazard function and
the survival function, the all cause hazard function corre-
sponding to S(t|z) can be written as

h(t|z) = h∗(t|z) + λ(t|z), (2)

where h∗(t|z) is the general population hazard function
and λ(t|z) is termed the excess hazard function or excess
mortality. Both h∗(t|z) and S∗(t|z) are usually computed
from publicly available life tables matched on variables
such as age, sex, and calendar year. The most popular way
to include covariate effects is the proportional excess haz-
ard model with a parametric specification of the baseline
excess hazard [9, 10].

Parametric cure models
In survival analysis, cure models are used to provide use-
ful information, particularly in cancers where the patient
hazard function reaches the same level as the general
population hazard function after some time [7, 11]. This
corresponds to the relative survival reaching a plateau and
the patients still alive after this time point are consid-
ered statistically cured. The main parameter of interest in
cure models is the proportion of patients reaching statisti-
cal cure, also known as the cure proportion. Cure models
are commonly divided into mixture and non-mixture cure
models [7]. Inmixture curemodels, the patient population
is considered a mixture of cured and uncured individuals.
The relative survival is a mixture of a relative survival
function for the cured and uncured patients, i.e.,

R(t|z) = S(t|z)
S∗(t|z) = π(z)+[ 1 − π(z)] Su(t|z), (3)

where π(z) is the, potentially covariate dependent, cure
proportion and Su(t|z) is the relative survival function of
the uncured patients. The cure proportion can be mod-
elled through a link function, e.g., with a logistic, identity,
or log-log link function [7]. The function Su(t|z) can
conveniently be modelled by regular parametric survival
models, such as a Weibull model, a log-normal model, or
more flexible alternatives such as a Weibull-Weibull mix-
ture model [12]. The model is estimated by maximum
likelihood where the only external information needed is
the general population hazard at the observed event times
(see Lambert et al. [7] for the likelihood function).
Non-mixture cure models are of a less intuitive form:

R(t|z) = S(t|z)
S∗(t|z) = π(z)1−˜S(t|z), (4)

where the function ˜S(t|z) is a proper survival func-
tion which does not have an intuitive interpretation
like Su(t|z). By rewriting the non-mixture cure model,
it can be formulated as a mixture cure model, with
(

π(z)1−˜S(t|z) − π(z)
)

/(1 − π(z)) as the relative survival
function of the uncured patients [7]. Thus, estimation of
the non-mixture cure model can be carried out similarly
to that of mixture cure models.
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Flexible parametric cure models
Royston and Parmar introduced a flexible parametric pro-
portional hazards model by using restricted cubic splines
to model the baseline hazard function (on the log cumu-
lative hazard scale) [8]. This approach was applied to
relative survival by Nelson et al. where the log-cumulative
excess hazard was modelled by restricted cubic splines
[10]. Including covariate effects, the relative survival by
Nelson et al. is given by

log(− log(R(t|z)) = s0(x; γ 0) + zTβ +
p

∑

i=1
si(x; γ i)zi,

(5)

where x = log(t), p is the number of time-varying covari-
ate effects, s0(x; γ 0) is a baseline restricted cubic spline,
β is a vector of regression coefficients, and si(x; γ i) is a
spline corresponding to the ith covariate, providing a time
varying coefficient. For the ith spline, Ki knots, ki1 <

ki2 < ... < kiKi , are selected on the log-time scale. The
spline is then given as a linear combination of base func-
tions defined through the chosen knots, i.e., si(x; γ i) =
∑Ki−1

j=0 vij(x)γij, where γ i are model parameters. The base
functions are given by vi0(x) = 1, vi1(x) = x, and

vij(x) = (x−kij)3+ −λij(x−ki1)3+ − (1−λij)(x−kiKi)
3+,
(6)

for j = 2, ...,Ki − 1, where λij = kiKi−kij
kiKi−ki1 and x+ =

max(x, 0). Generally, the number and placement of the
knots in the different spline functions do not need to be
the same.
Andersson et al. used (5) to establish a flexible paramet-

ric cure model [13]. This model is formulated similarly to
(5), but the basis functions of the splines are adjusted to
ensure that the relative survival has zero slope after a pre-
selected time point which is used as the last knot in all
spline functions, i.e., kK = k0K0 = k1K1 = · · · = kpKp . The
cure proportion is then estimated by R(kK ). Rewriting (5)
we obtain

R(t|z) = exp
⎛

⎝−exp
(

γ00 + zTβ
)

exp

⎛

⎝

K0−1
∑

i=1
vi(x)γi +

p
∑

i=1
si(x; γ i)zi

⎞

⎠

⎞

⎠.

(7)

Hence, the model by Andersson et al. can be viewed
as a non-mixture cure model where the cure proportion
is modelled through the baseline spline parameter, γ00,
and the fixed covariate effects, zTβ , while the remaining
parameters are used to model 1 − ˜S(t) [13]. While this
model provides a flexible framework for estimating the

cure proportion in cancer studies, the assumption of sta-
tistical cure after the last knot is strong. Therefore, we
introduce a new flexible parametric cure model which
combines regular mixture cure models with flexible para-
metric survival models. The model is specified by (3)
with

Su(t|z)=exp
(

− exp
(

s0(x; γ 0) + zTβ +
p

∑

i=1
si(x; γ i)zi

))

.

(8)

Similarly to the more simple cure models presented in
Lambert et al. [7], π(z) can be modelled by various link
functions and the relative survival cannot fall below π(z),
thus ensuring statistical cure. The model is fitted by max-
imum likelihood using the likelihood of the mixture cure
model. This cure model enables flexible modelling of the
relative survival without the strong assumption of cure
after the last knot while providing themore intuitive inter-
pretation of a mixture cure model. Additionally, in this
model, the modelling of the cure proportion becomes
more clearly separated from the modelling of Su(t).

The loss of lifetime function
The conditional expected residual lifetime given survival
until a time point t for individuals with covariate vector

z can be computed by
∞
∫

t
S(u|z)du/S(t|z). Based on this

property, the loss of lifetime function can be computed by

L(t|z) =
∫ ∞
t S∗(u|z)du

S∗(t|z) −
∫ ∞
t S(u|z)du

S(t|z) , (9)

which is the difference in expected residual lifetime after
time point t between the general population and the
patients.
Extrapolation of both S∗(·|z) and S(·|z) is required to

compute (9) since the survival distributions typically can-
not be fully estimated due to censoring. Similarly to
Andersson et al. [1], the extrapolation of the expected sur-
vival, S∗(·), can be accomplished by using the method of
Ederer et al. [14] (Ederer I) and by making assumptions
about the future population mortality rates. The latter can
be carried out by using mortality rates from the last avail-
able time point or, if available, by using predicted future
mortality rates.
For the patient survival, we apply the relative survival

factorization, i.e., S(t) = S∗(t)R(t), such that the extrap-
olation is based on the relative survival and the general
population survival. Extrapolation of R(·) can be enabled
by fitting a parametric relative survival model [1]. Since
some cancer patient groups experience statistical cure
after some time while others experience persistent excess
mortality, several assumptions on the relative survival can
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be applied. We consider three flexible parametric relative
survival models, which mainly differ in the tail:

1) the Nelson et al. [10] relative survival (NRS) model,
which is linear on the log cumulative excess hazard
scale after the last knot,

2) the Andersson et al. [13] relative survival (ARS)
model, which is constant on the log cumulative
excess hazard scale after the last knot and thereby
incorporates statistical cure, and

3) the flexible mixture cure (FMC) model in (8), which
incorporates statistical cure, but is not restricted to a
constant log cumulative excess hazard after the last
knot.

Due to their flexibility, the three models typically behave
similarly within the first part of the follow-up, but may
produce different survival trajectories beyond the avail-
able follow-up. In curemodels, the relative survival cannot
fall below π , and thus these models have a parameter to
control the asymptote of the relative survival. Therefore,
in cases where statistical cure occurs, cure models may
improve extrapolation as compared to non-cure models.
In cases where statistical cure does not occur, cure mod-
els may provide too optimistic extrapolations and hence
may not be appropriate. However, in such cases, the intro-
duced FMC model is expected to estimate π close to zero
such that the fit is mainly based on the flexible survival
function, Su(t). In the ARS model, letting π = 0, sub-
stantially affects the survival function since this forces
R (kK ) = 0. Therefore, we consider the FMC model a
hybrid between the NRS and ARS models.

Implementation
Initial values for the optimization procedure for the FMC
model were chosen by first fitting a Weibull parametric
cure model using only fixed covariate effects, i.e., fit-
ting model (3) with a Weibull formulation of Su(t) and a
logistic link for π . For the cure proportion, initial values
were found by fitting a linear model with the predicted
cure proportions scaled by the chosen link function as
response and the cure proportion covariates as explana-
tory variables. For the relative survival of the uncured,
initial values were found by fitting a linear model with
the log-log transformed predicted relative survival of the
uncured at the observed event times as response and the
splines and covariates of Su(t) as explanatory variables.
The splines do not guarantee that Su(t) is proper, but this
can be obtained by adding a penalty for negative values
of hu(t) = −d/dt log Su(t) similarly to Liu et al. [15]. In
particular, the term

κ

2

n
∑

j=1
hu(tj|zj)21

[

hu(tj|zj) < 0
]

(10)

is subtracted from the log-likelihood, where tj and zj
are the observed follow-up time and covariate vector,
respectively, of patient j. Initially, κ is 1, but doubles until
no negative values of hu are obtained. Orthogonalization
of the base functions of the restricted cubic splines has
previously been recommended due to the potential cor-
relation between the base functions [16]. We employed a
QR-decomposition approach to carry out the orthogonal-
ization.
Choosing the number and location of the knots is a key

issue in spline-based models. Similarly to Royston and
Parmar, the knots of the FMCmodel were selected accord-
ing to the quantiles of the uncensored event times [8]. In
a simulation study, Rutherford et al. [16] concluded that
complex hazard shapes can adequately be captured by the
spline-based model of Royston and Parmar [8] provided
that a sufficient number of knots are selected. In par-
ticular, the survival model was rather insensitive to the
number of knots and it was argued that the results should
also be valid in relative survival and cure models [16].
All analyses were performed in the statistical program-

ming language R. For the purpose of this article, the
NRS and ARS models were fitted using the package
rstpm2 [17]. Functions for estimating the presented FMC
model and computing the loss of lifetime function were
assembled in the R-package cuRe (see https://github.com/
LasseHjort/cuRe). The package also enables estimation of
the expected residual lifetime, restricted expected resid-
ual lifetime, and restricted loss of lifetime using any of
the models considered here. The integrals of the loss of
lifetime function were computed numerically by Gauss-
Legendre quadrature, while the point-wise variance of the
loss of lifetime function was estimated using the delta
method and numerical differentiation.

Results
Simulation study
Simulation design
We simulated data according to selected relative survival
scenarios by assuming independence between the relative
survival and general population survival times. Similarly
to Rutherford et al. [18], we used the following simulation
scheme:

1. Draw a general population survival time TE from S∗.
2. Draw a relative survival time, TR from R.
3. Draw a censoring time TC from C.
4. The observed follow-up time is given by

T = min(TR,TE ,TC) and the event indicator is
δ = 1 [min(TR,TE) ≤ TC].

The general population survival distribution, S∗(t), was
chosen corresponding to 50-, 60-, and 70-year-old female
patients diagnosed in 1980. For this purpose, we used the

https://github.com/LasseHjort/cuRe
https://github.com/LasseHjort/cuRe
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Danish general population mortality rates published by
the Human Mortality Database [19]. The relative survival,
R(t), was determined by a Weibull mixture cure model
according to the scenarios in Fig. 1. In scenario 1, 2, and
3, the cure proportion was 40%, 40%, and 75% and cure
occurred within the available follow-up, just outside the
follow-up, and many years after the last follow-up time,
respectively. In scenarios 4, 5, and 6, the cure proportion
was zero and therefore the relative survival function cor-
responded to a regular Weibull model. Scenario 5 was
similar to 3 within the follow-up, but differed beyond the
follow-up. In scenario 4, most patients died within the
follow-up and scenario 6 was included as an example of
a clear absence of cure within the follow-up. In scenar-
ios where R(t) had a cure proportion, follow-up times
were set to ∞, if there was no solution to the equation
R(t) = U , where U is uniformly distributed between 0
and 1. To examine the extrapolation performances under
different trajectories, we repeated the simulations after
replacing the Weibull distribution with the generalized
gamma distribution.
To mimic typical register data, the censoring times

were simulated from a uniform distribution, C, between
0 and 15 years. Using S∗ and R, the true loss of life-
time function was obtained by inserting into (9). All
scenarios were simulated 500 times with a sample size
of 1000.
For estimation of the loss of lifetime function, we con-

sidered five models (Table 1). In order to obtain the
same number of parameters in each model, an addi-
tional knot was required for model B and C, which was

placed late in the follow-up, while for model D and E
the number of knots was decreased by one since these
contain an explicit parameter for the cure proportion.
Extrapolation using model A and B was considered by
Andersson et al. [1]. We considered a special case of the
latter model, where the last knot was placed beyond the
available follow-up. We also considered two instances of
the FMC model, i.e., D with conventional knot placement
and E where the knots were placed in the beginning of the
follow-up.
For each model, the loss of lifetime function was com-

puted and the bias was measured by D(t) = ̂L(t) − L(t).
The integral,

∫ 15
0 |D(u)|du, was used to measure the bias

of the loss of lifetime estimate during the entire follow-up
period.

Simulation results
In scenarios with statistical cure (scenario 1, 2 and 3), all
models had comparable performances at time zero for 50-
year-old patients (Fig. 2). In scenarios 1 and 3, the bias
was fairly low for all models at all time points, but in
scenario 2, the non-cure model, A, yielded increasingly
upward biased estimates. In scenarios without statistical
cure (scenario 4, 5, and 6), the diversity between the mod-
els became larger. In these scenarios, the non-mixture
cure models, B and C, underestimated the loss of life-
time, most markedly seen in model B which assumes cure
within the follow-up period.
Generally, the FMC models, D and E, showed good

performance both in scenarios with statistical cure occur-
ring within and beyond the available follow-up. In

Weibull Generalized gamma
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Fig. 1 Relative survival functions used to simulate net survival times. In scenario 1, 2, and 3, follow-up times were simulated from a Weibull
(generalized gamma) cure model with varying cure proportions, and in scenario 4, 5, and 6, the follow-up times were simulated from a Weibull
(generalized gamma) relative survival model
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Table 1 Specification of models used to estimate the loss of
lifetime function

Model Model Nr. knots Knot locations

A NRS 6 0%, 20%, 40%, 60%, 80%, and 100%
quantiles of the uncensored event
times.

B ARS 7 0%, 20%, 40%, 60%, 80%, and 100%
quantiles of the uncensored event
times with an additional knot
placed at 10 years.

C ARS 7 0%, 20%, 40%, 60%, and 80%
quantiles of the uncensored event
times. The last knot is placed at 80
years and an additional knot is
placed at 10 years.

D FMC 5 0%, 25%, 50%, 75%, and 100%
quantiles of the uncensored event
times.

E FMC 5 First uncensored event time, 0.5, 1,
2, and 5 years.

NRS: Nelson et al. [10] relative survival model, ARS: Andersson et al. [13] relative
survival model, FMC: Flexible mixture cure model

scenarios where statistical cure did not occur, the perfor-
mance of the FMC models was comparable to model A,
but the biases were more dispersed for later time point,
especially in scenario 4 and 6. At ten years, the biases of
model E were slightly less dispersed compared tomodel D.

Table 2 shows the integrated loss of lifetime biases for
50-, 60-, and 70-year-old patients. In general, the inte-
grated overall biases were consistent with Fig. 2 where
model A, D, and E performed well across the six scenarios.
In comparison to model D, model E was largely producing
less biased estimates, while only being slightly worse than
model A in scenario 4 and 6. Generally, the loss of lifetime
bias decreased with increasing age and hence reduced the
differences between the models. Despite the bias reduc-
tion in 70-year-olds, model B still resulted in a relatively
large bias in scenario 4 and 6. The results were similar
in the generalized gamma case (Fig. 3 and Table 3). In
particular, the models A and E showed satisfactory perfor-
mance in all scenarios while model D was more biased in
scenario 6. Also in the generalized gamma case, model E
had slightly lower integrated bias compared to model D in
scenario 4, 5, and 6.

Analysis of Danish cancer registry data
Data description
To investigate the performance of the models in Table 1
in cancer survival data, we analyzed data from the Dan-
ish Cancer Registry [20] on patients with colon cancer
(n = 4558), breast cancer (n = 21, 731), bladder can-
cer (n = 11, 738) and malignant melanoma (n = 2404).
To achieve (almost) complete follow-up, we included
patients diagnosed in the period 1960–1975, who were

Fig. 2 Loss of lifetime bias, D(t), of the models in Table 1 at time 0, 2, 5, and 10 years in 50-year-old patients following six Weibull relative survival
scenarios
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Table 2 The integrated loss of lifetime bias in the Weibull scenario, computed by integrating |D(t)| from 0 to 15 years

Age Scenario pi Model A Model B Model C Model D Model E

50 1 0.40 8.6(0.9-39.2) 2.4(0.5-10.7) 4.1(0.9-19.5) 2.4(0.2-18.5) 2.6(0.3-28.6)

2 0.40 28.9(5.5-66.9) 11.7(6.0-23.1) 12.7(3.7-35.3) 11.1(0.6-68.0) 9.3(0.7-52.1)

3 0.75 8.9(0.7-42.7) 8.9(4.3-15.6) 4.8(0.9-16.4) 7.5(0.5-31.5) 7.2(0.2-23.9)

4 0.00 6.5(0.3-34.5) 144.8(123.4-171.2) 37.2(8.9-82.1) 24.9(0.3-111.8) 18.1(0.2-104.6)

5 0.00 11.0(0.2-43.3) 25.4(14.8-35.4) 13.0(3.2-31.0) 12.8(0.4-33.8) 9.6(0.3-30.9)

6 0.00 18.1(0.5-65.4) 106.6(71.6-127.7) 49.2(7.9-92.4) 36.2(0.6-103.7) 23.9(0.2-89.4)

60 1 0.40 6.0(1.3-19.4) 1.9(0.4-8.0) 3.1(0.6-13.5) 2.1(0.2-14.7) 2.4(0.2-17.6)

2 0.40 14.9(2.6-45.4) 6.4(3.4-14.9) 7.7(2.0-26.2) 7.7(0.6-40.2) 6.6(0.2-42.5)

3 0.75 7.2(0.4-39.6) 4.2(1.9-10.0) 4.0(0.4-22.7) 5.4(0.3-28.2) 4.7(0.3-19.6)

4 0.00 5.7(0.3-24.1) 79.5(64.6-93.2) 21.0(6.1-44.4) 14.2(0.3-62.4) 10.2(0.1-49.8)

5 0.00 7.5(0.3-33.4) 10.7(5.1-18.1) 5.6(1.5-18.6) 7.2(0.5-26.0) 5.0(0.2-17.9)

6 0.00 10.9(0.6-37.3) 48.2(36.4-61.2) 18.5(4.1-42.5) 16.8(1.2-50.9) 11.2(0.3-45.3)

70 1 0.40 3.6(0.9-12.4) 1.5(0.2-4.8) 2.2(0.4-7.3) 1.7(0.1-8.8) 2.0(0.1-12.9)

2 0.40 6.2(1.2-20.8) 3.4(1.5-8.8) 4.0(0.9-14.2) 4.7(0.3-19.4) 4.3(0.3-19.2)

3 0.75 4.9(0.3-20.6) 2.4(0.8-7.0) 3.3(0.3-12.9) 3.6(0.2-19.0) 2.8(0.2-11.2)

4 0.00 4.3(0.3-16.1) 34.9(26.9-44.4) 9.6(3.5-23.3) 7.3(0.2-31.3) 5.7(0.1-27.5)

5 0.00 5.3(0.4-25.2) 3.9(1.7-8.9) 3.5(0.6-14.8) 4.3(0.2-18.5) 2.9(0.1-10.5)

6 0.00 6.0(0.3-21.7) 16.5(9.9-23.8) 6.2(1.8-16.6) 6.9(0.2-23.7) 5.1(0.2-17.4)

The loss of lifetime was computed for 50-, 60-, and 70-year-old patients. The mean and range from the 500 simulations are provided

Fig. 3 Loss of lifetime bias, D(t), of the models in Table 1 at time 0, 2, 5, and 10 years in 50-year-old patients following six generalized gamma relative
survival scenarios
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Table 3 The integrated loss of lifetime bias in the generalized gamma scenario, computed by integrating |D(t)| from 0 to 15 years

Age Scenario pi Model A Model B Model C Model D Model E

50 1 0.40 6.8(0.6-30.1) 2.4(0.4-11.3) 4.0(0.5-21.0) 2.6(0.3-29.8) 3.1(0.3-30.5)

2 0.40 23.1(5.0-48.1) 10.2(5.7-18.3) 7.1(1.8-22.8) 8.5(0.6-39.3) 10.3(0.7-43.8)

3 0.75 17.4(1.5-74.8) 10.2(4.2-19.8) 7.6(1.0-31.0) 11.2(0.8-63.1) 10.0(0.3-56.2)

4 0.00 6.7(0.2-32.6) 146.5(121.6-166.8) 39.2(10.4-75.0) 22.8(0.2-123.1) 15.4(0.2-95.0)

5 0.00 14.8(0.6-88.3) 35.9(22.7-45.6) 18.0(3.2-39.4) 18.4(0.6-77.5) 13.7(0.3-40.3)

6 0.00 16.1(0.6-72.9) 130.5(108.5-153.0) 56.1(9.8-99.7) 36.4(0.5-117.8) 21.3(0.8-100.1)

60 1 0.40 4.7(0.9-16.5) 1.9(0.2-7.5) 3.0(0.3-12.1) 2.2(0.2-14.3) 2.8(0.1-21.5)

2 0.40 12.0(2.7-35.4) 5.5(3.1-10.9) 4.6(1.0-19.4) 5.7(0.4-32.1) 7.2(0.5-35.0)

3 0.75 11.1(1.0-53.0) 5.2(2.2-11.4) 6.1(0.7-31.7) 7.4(0.8-37.6) 7.5(0.4-31.0)

4 0.00 5.8(0.2-22.2) 80.3(65.1-96.0) 21.8(7.3-42.4) 13.9(0.3-66.4) 9.5(0.2-49.4)

5 0.00 10.2(0.7-55.2) 14.8(6.9-22.4) 7.4(1.6-29.4) 9.6(0.3-33.6) 6.8(0.2-22.0)

6 0.00 9.8(0.3-37.7) 62.2(44.7-77.0) 24.1(5.9-51.5) 17.1(0.7-64.5) 11.4(0.6-54.9)

70 1 0.40 3.1(0.6-11.0) 1.4(0.2-4.8) 2.2(0.2-7.4) 1.8(0.2-8.8) 2.3(0.1-12.7)

2 0.40 5.5(1.0-16.7) 2.6(1.4-6.0) 2.9(0.4-11.1) 3.2(0.2-13.6) 4.2(0.3-14.6)

3 0.75 6.4(0.4-30.7) 2.8(1.0-8.8) 4.1(0.3-20.0) 4.6(0.4-24.6) 4.5(0.4-17.6)

4 0.00 4.2(0.3-14.9) 35.4(26.7-43.6) 10.2(3.9-23.9) 7.4(0.3-30.9) 5.4(0.2-24.0)

5 0.00 6.1(0.2-26.8) 4.9(2.3-10.5) 3.9(0.6-17.2) 4.8(0.4-26.0) 3.6(0.1-13.1)

6 0.00 6.1(0.4-23.2) 22.4(14.5-30.4) 8.0(2.4-22.7) 7.2(0.7-29.7) 5.2(0.4-25.1)

The loss of lifetime was simulated for 50-, 60-, and 70-year-old patients. The mean and range from the 500 simulations are provided

older than 50 years at diagnosis. The diseases were chosen
based on the same considerations as in Andersson et al.
[1], i.e., colon cancer typically displays statistical cure,
bladder cancer a constant excess hazard, melanoma a
rather high survival rate, and breast cancer is seen in
both young and old patients. Patients were followed until
the end of 2016, where alive patients were censored and
follow-up was measured from diagnosis until death or
censoring. For the purpose of investigating the extrap-
olation performance, we restricted the follow-up to 16
years by censoring patients alive in January 1976 and
divided patients into age groups; 50–59, 60–69, 70–79,
80+. The true loss of lifetime was calculated by insert-
ing the Kaplan-Meier estimate into (9), and the bias was
computed by D(t). For both the true and estimated loss
of lifetime, the upper limit of the integrals in (9) was
set to 40 years at which time the true survival was close
to zero.

Results
Figure 4 shows the bias function for each disease and each
age group using the five models in Table 1. The corre-
sponding survival curves can be found in Additional file 1:
Figure S1-S4. The models displayed varying performance
across the cancer types and age groups, but biases were
commonly decreasing with increasing age. The extrapola-
tion performance within bladder cancer was rather poor;

in the age groups 50–59 and 60–69, the models consis-
tently underestimated the loss of lifetime function with
model B being the worst. Also for breast cancer, model B
underestimated the loss of lifetime function while model
C, which assumes statistical cure beyond the follow-up,
provided improved results. In breast cancer, the two FMC
models resulted in rather different loss of lifetime biases,
but the bias was not consistently better in one model.
For colon cancer where statistical cure is typically dis-
played, all models performed fairly well in all age groups
and among the melanoma patients, model B had the best
performance.
Overall, no model was consistently superior to the others,

but in scenarios of statistical cure, there was a slight
advantage of using cure models. However, in scenarios
without statistical cure, models B and C were substantially
biased.

Analysis of Danish lymphoma registry data
Data description
To illustrate a potential clinical application of the pro-
posed extrapolation techniques, we analyzed patient data
from the Danish Lymphoma Registry, which covers 94.9%
of all lymphoma cases in Denmark [21].We included adult
patients (≥18 years of age) diagnosed with diffuse large
B-cell lymphoma (DLBCL, n = 6639), follicular lym-
phoma (FL, n = 3204), or mantle cell lymphoma (ML,
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Fig. 4 Time-varying loss of lifetime bias using the models in Table 1 for extrapolation in bladder cancer, breast cancer, colon cancer, and melanoma
patients registered in the Danish Cancer registry

n = 980) in the period from 2000 to 2016. The follow-
up period was terminated in June 2017 and the follow-up
time was measured from time of diagnostic biopsy to
death or censoring.

Population-based loss of lifetime
For each disease, three models were fitted, namely the
NRS model with 6 knots, the ARS model with 7 knots,
and the FMCmodel with 5 knots (corresponding to model
A, B, and D in Table 1), resulting in the same number of
parameters. Additional file 1: Figure S5 displays the rela-
tive survival of each disease and disease-specific summary
measures are shown in Table 4.
The estimated loss of lifetime function based on the

three models is shown for each disease in Fig. 5. DLBCL

and ML patients had a high loss of lifetime at diag-
nosis with a rapid decrease, while FL patients dis-
played a fairly low initial loss of lifetime with a slow
improvement.
Clearly, the three models, despite being similar in

the beginning of the follow-up, produce rather different
conditional loss of lifetime estimates. At time zero, the
maximal difference between the models is seen to be
around 1 year for FL, for which the assumption of statisti-
cal cure is typically not reasonable. The model differences
increased as time progressed, with the largest difference
seen in ML patients. For DLBCL patients, the presented
FMC model yielded a compromise between the NRS and
ARS models which was seen by an intermediate loss of
lifetime function. However, for the FL and ML patients
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Table 4 Median age, 5-year relative survival (RS), and loss of
lifetime estimates at time zero in Danish diffuse large B-cell
lymphoma (DLBCL), follicular lymphoma (FL), and mantle cell
lymphoma (ML) patients

Model DLBCL FL ML

Median
age
(range)

68(18-101) 63(18-97) 70(28-99)

5-year RS
(95% CI)

NRS 0.66(0.65-0.68) 0.9(0.88-0.91) 0.61(0.57-0.65)

ARS 0.66(0.65-0.67) 0.9(0.88-0.91) 0.61(0.57-0.65)

FMC 0.66(0.64-0.67) 0.9(0.88-0.91) 0.61(0.58-0.65)

Loss of
lifetime
(95% CI)

NRS 7.43(7.06-7.80) 4.58(3.73-5.42) 7.66(6.86-8.46)

ARS 6.70(6.42-6.98) 3.57(3.13-4.02) 6.92(6.26-7.59)

FMC 7.21(6.86-7.55) 3.97(3.24-4.70) 7.74(6.95-8.53)

where cure cannot usually be assumed, this model resem-
bled the NRSmodel and even provided slightly higher loss
of lifetime estimates.

Age dependent loss of lifetime
The patient age at diagnosis plays a crucial role for the
individual expected residual lifetimes and thus also the
loss of lifetime function. For the NRS model, a time-
dependent age effect was specified, i.e.,

R(t|a) = exp (− exp (s0(x) + sa(a)s1(x))), (11)

where a is the patient age at diagnosis, sa(a) is a spline-
based age effect and s1(x) is the corresponding time-
effect. For the FMC model, (8), the same model was used

for Su(t|z) and for π(z) an age dependent spline-based
logistic model,

log
(

π

1 − π

)

= β0 + sa(a), (12)

was chosen. Since none of the diseases showed a clear
statistical cure trajectory, we did not consider the ARS
model here. The number and location of the knots for the
baseline spline function, s0(x), remained unchanged from
“Population-based loss of lifetime” section. For sa(a), 4
knots placed at the 0%, 33%, 66%, and 100% quantiles of
the patient age distribution were selected and the inter-
cept was removed since this is already modelled by the
baseline splines and β0. For s1(x), the number of knots
was chosen to be 3 and 2 for the NRS model and the
FMC model, respectively, yielding the same total number
of parameters.
The loss of lifetime conditional on 0, 2, and 5 years of

survival for female patients diagnosed in 2010 is shown in
Fig. 6 for varying patient ages. In all three cancer types, the
loss of lifetime decreased with increasing diagnostic age.
For DLBCL, the two models seemed to be in agree-

ment across patient age. However, the agreement between
the two models for 60–70 year old FL patients was poor,
likely due to the different model assumptions. For ML, the
model differences were larger for younger patients, likely
due to the additional extrapolation needed to compute the
loss of lifetime for these patients.

Discussion
In (8) we introduced a novel model, which incorporates
statistical cure by combining regular mixture cure models
with spline-based survival models. This model was com-
pared to the NRS model, which has a linear effect in the
spline function after the last knot and the ARS model,
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Fig. 5 The loss of lifetime function in Danish diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), andmantle cell lymphoma (ML) patients
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Fig. 6 The loss of lifetime conditional on 0, 2, and 5 years of survival for female diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and
mantle cell lymphoma (ML) patients diagnosed in 2010 at varying ages

which is constant after the last knot and thereby incor-
porates statistical cure. The simulations demonstrated a
consistently good performance of the NRS model and the
FMC model. The analysis of data from the Danish Cancer
Registry did not show consistently satisfactory perfor-
mance of any model, but in general assuming statistical
cure at the end of the follow-up can lead to substantial
biases in cases where this assumption is violated, while
yielding good estimates when cure is reached. The NRS
model performed slightly better than the FMC model
in scenarios where statistical cure did not occur. This
is likely due to the lack of identifiability often seen in
cure models in cases where cure is not reached within
the observed follow-up period [22], which ultimately may
produce inaccurate extrapolations.
The present article expanded on the study of Andersson

et al. [1] by evaluating the accuracy of the entire loss of
lifetime function using three extrapolation approaches.
While the loss of lifetime estimates at time zero in Fig. 4
seemed to be in agreement with the results reported by
Andersson et al., where only 10 years of follow-up were
used, the biases were not constant over time.
The general population survival probabilities for young

patients are high and precise extrapolation of the relative
survival is required to avoid a biased loss of lifetime func-
tion for these patients. Confirming this, we observed a
higher bias among young patients which should be kept in
mind when reporting loss of lifetime results. With longer
follow-up and higher age, the bias will decrease and in
future studies it would be of interest to estimate for a
fixed age distribution, the amount of follow-up needed to
provide sufficiently unbiased loss of lifetime estimates.
For some cancer types, the general population survival

will likely not reflect the survival of the patients had they
remained disease-free. The life style of patients diagnosed

with, e.g., lung or skin cancer is likely different from the
general population life style and hence the relative sur-
vival will not reflect the disease-specific (net) survival.
However, this does not change the usability of the general
populationmortality rates to provide extrapolations of the
survival function.
In contrast to net survival measures which are inter-

preted in the setting where the patient can only die from
the disease of interest, the loss of lifetime measure pro-
vides a crude measure of the cancer-related mortality. In
net measures, such as relative survival, it is often seen that
elderly patients have an increased mortality since deaths
from other causes are not taken into account. For young
patients, even a small excess mortality may have a large
impact on the loss of lifetime function as the expected life-
time without cancer is long. Therefore, it is often seen that
young patients have a higher loss of lifetime than elderly
patients.
An alternative to the unrestricted loss of lifetime, where

extrapolation is avoided, can be obtained by replacing the
upper limit of the integrals in (9) by a fixed time point
τ . In this setting, pseudo-values and flexible parametric
survival models have previously been recommended for
computing the mean survival time [23] and could also be
used for estimating the loss of lifetime function. Using
the three models to estimate the restricted loss of lifetime
would likely yield fairly similar estimates due to the model
similarities in the first part of the follow-up (Additional
file 1: Figure S5). However, interpretation of the restricted
loss of lifetime is not straightforward and the measure
does not capture the full disease burden.

Conclusion
Since there is no way of assessing the performance of
extrapolations applied to data with limited follow-up, the



Jakobsen et al. BMCMedical ResearchMethodology           (2019) 19:23 Page 12 of 13

inconsistencies between the simulation results and the full
follow-up data analysis emphasize the need for sensitivity
analyses.
We therefore recommend that extensive sensitivity anal-

yses are performed both with respect to the assumptions
of the relative survival model as well as the number and
location of the knots of the splines as recommended
previously [10, 13].

Additional file

Additional file 1: Supplementary figures. Description of data:
Figure S1-S4 displays the extrapolated overall survival for the four cancer
types considered in the analysis of data from the Danish Cancer Registry.
Figure S5 displays the relative survival of the three lymphoma types
considered in “Population-based loss of lifetime” section. (DOCX 248 kb)
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