1,255 research outputs found

    A downward revision to the distance of the 1806-20 cluster and associated magnetar from Gemini near-Infrared spectroscopy

    Get PDF
    We present H- and K-band spectroscopy of OB and Wolf-Rayet (WR) members of the Milky Way cluster 1806-20 (G10.0-0.3), to obtain a revised cluster distance of relevance to the 2004 giant flare from the SGR 1806-20 magnetar. From GNIRS spectroscopy obtained with Gemini South, four candidate OB stars are confirmed as late O/early B supergiants, while we support previous mid WN and late WC classifications for two WR stars. Based upon an absolute Ks-band magnitude calibration for B supergiants and WR stars, and near-IR photometry from NIRI at Gemini North plus archival VLT/ISAAC datasets, we obtain a cluster distance modulus of 14.7+/-0.35 mag. The known stellar content of the 1806-20 cluster suggests an age of 3-5 Myr, from which theoretical isochrone fits infer a distance modulus of 14.7+/-0.7 mag. Together, our results favour a distance modulus of 14.7+/-0.4 mag (8.7^+1.8_-1.5 kpc) to the 1806-20 cluster, which is significantly lower than the nominal 15 kpc distance to the magnetar. For our preferred distance, the peak luminosity of the December 2004 giant flare is reduced by a factor of three to 7 X 10^46 erg/s, such that the contamination of BATSE short gamma ray bursts (GRB's) from giant flares of extragalactic magnetars is reduced to a few percent. We infer a magnetar progenitor mass of ~48^+20_-8 Msun, in close agreement with that obtained recently for the magnetar in Westerlund 1.Comment: 6 pages, 4 figures, accepted for MNRAS Letter

    'I would rather die': reasons given by 16-year-olds for not continuing their study of mathematics

    Get PDF
    Improving participation rates in specialist mathematics after the subject ceases to be compulsory at age 16 is part of government policy in England. This article provides independent and recent support for earlier findings concerning reasons for non- participation, based on free response and closed items in a questionnaire with a sample of over 1500 students in 17 schools, close to the moment of choice. The analysis supports findings that perceived difficulty and lack of confidence are important reasons for students not continuing with mathematics, and that perceived dislike and boredom, and lack of relevance, are also factors. There is a close relationship between reasons for non-participation and predicted grade, and a weaker relation to gender. An analysis of the effects of schools, demonstrates that enjoyment is the main factor differentiating schools with high and low participation indices. Building on discussion of these findings, ways of improving participation are briefly suggested

    Contacting the spirits of the dead: paranormal belief and the teenage worldview

    Get PDF
    A number of previous studies have examined both the overall level of belief expressed by young people in the paranormal and the major demographic predictors of such belief. Building on this research tradition, the present study examines how one specific paranormal belief concerning contact with the spirits of the dead integrates with the wider teenage worldview. Data provided by 33,982 pupils age 13 to 15 years throughout England and Wales demonstrated that almost one in three young people (31%) believed that it is possible to contact the spirits of the dead. Compared with young people who did not share this belief, the young people who believed in the possibility of contacting the spirits of the dead displayed lower psychological wellbeing, higher anxiety, greater isolation, greater alienation, less positive social attitudes, and less socially conforming lifestyles. Overall, paranormal beliefs seem to be associated with a less healthy worldview, in both personal and social terms

    A spectroscopic census of the M82 stellar cluster population

    Full text link
    We present a spectroscopic study of the stellar cluster population of M82, the archetype starburst galaxy, based primarily on new Gemini-North multi-object spectroscopy of 49 star clusters. These observations constitute the largest to date spectroscopic dataset of extragalactic young clusters, giving virtually continuous coverage across the galaxy; we use these data to deduce information about the clusters as well as the M82 post-starburst disk and nuclear starburst environments. Spectroscopic age-dating places clusters in the nucleus and disk between (7, 15) and (30, 270) Myr, with distribution peaks at ~10 and ~140 Myr respectively. We find cluster radial velocities in the range (-160, 220) km/s (wrt the galaxy centre) and line of sight Na I D interstellar absorption line velocities in (-75, 200) km/s, in many cases entirely decoupled from the clusters. As the disk cluster radial velocities lie on the flat part of the galaxy rotation curve, we conclude that they comprise a regularly orbiting system. Our observations suggest that the largest part of the population was created as a result of the close encounter with M81 ~220 Myr ago. Clusters in the nucleus are found in solid body rotation on the bar. The possible detection of WR features in their spectra indicates that cluster formation continues in the central starburst zone. We also report the potential discovery of two old populous clusters in the halo of M82, aged >8 Gyr. Using these measurements and simple dynamical considerations, we derive a toy model for the invisible physical structure of the galaxy, and confirm the existence of two dominant spiral arms.Comment: Accepted for publication in the Astrophysical Journa

    Effect of magnetic state on the γα\gamma -\alpha transition in iron: First-principle calculations of the Bain transformation path

    Full text link
    Energetics of the fcc (γ\gamma) - bcc (α\alpha) lattice transformation by the Bain tetragonal deformation is calculated for both magnetically ordered and paramagnetic (disordered local moment) states of iron. The first-principle computational results manifest a relevance of the magnetic order in a scenario of the γ\gamma - α\alpha transition and reveal a special role of the Curie temperature of α\alpha-Fe, TCT_C, where a character of the transformation is changed. At a cooling down to the temperatures T<TCT < T_C one can expect that the transformation is developed as a lattice instability whereas for T>TCT > T_C it follows a standard mechanism of creation and growth of an embryo of the new phase. It explains a closeness of TCT_C to the temperature of start of the martensitic transformation, MsM_s.Comment: 4 pages, 3 figures, submitted in Phys. Rev. Letter

    Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    Get PDF
    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure—the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes—which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function

    Radiation hardness and lifetime studies of photodiodes for the optical readout of the ATLAS semiconductor tracker

    Get PDF
    A large sample (96) of epitaxial Si PIN photodiodes has been irradiated by ~1 MeV neutrons and 24 GeV protons with fluences up to 10E15 equivalent 1 MeV neutrons per square cm in order to test their suitability for use in the optical readout of the ATLAS semiconductor tracker and pixel detector at the CERN Large Hadron Collider. After an initial reduction of 30the responsivity remains constant up to the maximum fluence. The rise and fall times are not significantly affected and remain below 1 ns. Although the dark current increases linearly with increasing neutron fluence, its level remains below 100 nA which is negligible in comparison to the operating photocurrent which is above 100 microamps. Enhance ageing studies at 60 degrees C have also been carried out and no failure has occurred after an equivalent of 360 years of operation

    Repurposing FDA approved drugs as radiosensitizers for treating hypoxic prostate cancer

    Get PDF
    Abstract Background The presence of hypoxia is a poor prognostic factor in prostate cancer and the hypoxic tumor microenvironment promotes radioresistance. There is potential for drug radiotherapy combinations to improve the therapeutic ratio. We aimed to investigate whether hypoxia-associated genes could be used to identify FDA approved drugs for repurposing for the treatment of hypoxic prostate cancer. Methods Hypoxia associated genes were identified and used in the connectivity mapping software QUADrATIC to identify FDA approved drugs as candidates for repurposing. Drugs identified were tested in vitro in prostate cancer cell lines (DU145, PC3, LNCAP). Cytotoxicity was investigated using the sulforhodamine B assay and radiosensitization using a clonogenic assay in normoxia and hypoxia. Results Menadione and gemcitabine had similar cytotoxicity in normoxia and hypoxia in all three cell lines. In DU145 cells, the radiation sensitizer enhancement ratio (SER) of menadione was 1.02 in normoxia and 1.15 in hypoxia. The SER of gemcitabine was 1.27 in normoxia and 1.09 in hypoxia. No radiosensitization was seen in PC3 cells. Conclusion Connectivity mapping can identify FDA approved drugs for potential repurposing that are linked to a radiobiologically relevant phenotype. Gemcitabine and menadione could be further investigated as potential radiosensitizers in prostate cancer
    corecore