205 research outputs found

    Flexible seal for valves Patent

    Get PDF
    Flexible inflatable seal for butterfly valve

    Male reproductive health and environmental xenoestrogens

    Get PDF
    EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright. Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright. Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.Male reproductive health has deteriorated in many countries during the last few decades. In the 1990s, declining semen quality has been reported from Belgium, Denmark, France, and Great Britain. The incidence of testicular cancer has increased during the same time incidences of hypospadias and cryptorchidism also appear to be increasing. Similar reproductive problems occur in many wildlife species. There are marked geographic differences in the prevalence of male reproductive disorders. While the reasons for these differences are currently unknown, both clinical and laboratory research suggest that the adverse changes may be inter-related and have a common origin in fetal life or childhood. Exposure of the male fetus to supranormal levels of estrogens, such as diethlylstilbestrol, can result in the above-mentioned reproductive defects. The growing number of reports demonstrating that common environmental contaminants and natural factors possess estrogenic activity presents the working hypothesis that the adverse trends in male reproductive health may be, at least in part, associated with exposure to estrogenic or other hormonally active (e.g., antiandrogenic) environmental chemicals during fetal and childhood development. An extensive research program is needed to understand the extent of the problem, its underlying etiology, and the development of a strategy for prevention and intervention.Supported by EU Contract BMH4-CT96-0314

    Endoglin (CD105) expression in ovarian serous carcinoma effusions is related to chemotherapy status

    Get PDF
    Endoglin (CD105), a cell surface co-receptor for transforming growth factor-β, is expressed in proliferating endothelial cells, as well as in cancer cells. We studied endoglin expression and its clinical relevance in effusions, primary tumors, and solid metastatic lesions from women with advanced-stage ovarian serous carcinoma. Endoglin expression was analyzed by immunohistochemistry in effusions (n = 211; 174 peritoneal, 37 pleural). Cellular endoglin staining was analyzed for association with the concentration of soluble endoglin (previously determined by ELISA) in 95 corresponding effusions and analyzed for correlation with clinicopathologic parameters, including survival. Endoglin expression was additionally studied in 34 patient-matched primary tumors and solid metastases. Carcinoma and mesothelial cells expressed endoglin in 95/211 (45%) and 133/211 (63%) effusions, respectively. Carcinoma cell endoglin expression was more frequent in effusions from patients aged ≤60 years (p = 0.048) and in post- compared to prechemotherapy effusions (p = 0.014), whereas mesothelial cell endoglin expression was higher in prechemotherapy effusions (p = 0.021). No association was found between cellular endoglin expression and its soluble effusion concentration. Endoglin was expressed in 17/34 (50%) primary tumors and 19/34 (56%) metastases, with significantly higher percentage of immunostained cells in solid metastases compared to effusions (p = 0.036). Endoglin expression did not correlate with survival. Tumor cell endoglin expression is higher in post- vs. prechemotherapy effusions, whereas the opposite is seen in mesothelial cells. Together with its upregulation in solid metastases, this suggests that the expression and biological role of endoglin may differ between cell populations and change along tumor progression in ovarian carcinoma

    The estrogen-injected female mouse: new insight into the etiology of PCOS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Female mice and rats injected with estrogen perinatally become anovulatory and develop follicular cysts. The current consensus is that this adverse response to estrogen involves the hypothalamus and occurs because of an estrogen-induced alteration in the GnRH delivery system. Whether or not this is true has yet to be firmly established. The present study examined an alternate possibility in which anovulation and cyst development occurs through an estrogen-induced disruption in the immune system, achieved through the intermediation of the thymus gland.</p> <p>Methods, Results and Conclusion</p> <p>A putative role for the thymus in estrogen-induced anovulation and follicular cyst formation (a model of PCOS) was examined in female mice by removing the gland prior to estrogen injection. Whereas all intact, female mice injected with 20 ug estrogen at 5–7 days of age had ovaries with follicular cysts, no cysts were observed in animals in which thymectomy at 3 days of age preceded estrogen injection. In fact, after restoring immune function by thymocyte replacement, the majority of thymectomized, estrogen-injected mice had ovaries with corpora lutea. Thus, when estrogen is unable to act on the thymus, ovulation occurs and follicular cysts do not develop. This implicates the thymus in the cysts' genesis and discounts the role of the hypothalamus. Subsequent research established that the disease is transferable by lymphocyte infusion. Transfer took place between 100-day-old estrogen-injected and 15-day-old naïve mice only when recipients were thymectomized at 3 days of age. Thus, a prerequisite for cyst formation is the absence of regulatory T cells. Their absence in donor mice was judged to be the result of an estrogen-induced increase in the thymus' vascular permeability, causing de facto circumvention of the final stages of regulatory T cell development. The human thymus has a similar vulnerability to steroid action during the fetal stage. We propose that in utero exposure to excessive levels of steroids such as estrogen has a long-term effect on the ability of the thymus to produce regulatory T cells. In female offspring this can lead to PCOS.</p

    Birth weight and breast cancer risk

    Get PDF
    Exploring whether the positive association between birth weight and breast cancer risk differs by other breast cancer risk factors may help inform speculation about biological mechanism. In these data, high birth weight was associated with breast cancer risk in younger and in more educated women, but was not associated overall
    • …
    corecore