6,524 research outputs found

    A GIS-based procedure for landslide intensity evaluation and specific risk analysis supported by persistent scatterers interferometry (PSI)

    Get PDF
    The evaluation of landslide specific risk, defined as the expected degree of loss due to landslides, requires the parameterization and the combination of a number of socio-economic and geological factors, which often needs the interaction of different skills and expertise (geologists, engineers, planners, administrators, etc.). The specific risk sub-components, i.e., hazard and vulnerability of elements at risk, can be determined with different levels of detail depending on the available auxiliary data and knowledge of the territory. These risk factors are subject to short-term variations and nowadays turn out to be easily mappable and evaluable through remotely sensed data and GIS (Geographic Information System) tools. In this work, we propose a qualitative approach at municipal scale for producing a “specific risk” map, supported by recent satellite PSI (Persistent Scatterer Interferometry) data derived from SENTINEL-1 C-band images in the spanning time 2014–2017, implemented in a GIS environment. In particular, PSI measurements are useful for the updating of a landslide inventory map of the area of interest and are exploited for the zonation map of the intensity of ground movements, needed for evaluating the vulnerability over the study area. Our procedure is presented throughout the application to the Volterra basin and the output map could be useful to support the local authorities with updated basic information required for environmental knowledge and planning at municipal level. Moreover, the proposed procedure is easily managed and repeatable in other case studies, as well as exploiting different SAR sensors in L- or X-band

    Standardization of molecular monitoring for chronic myeloid leukemia in Latin America using locally produced secondary cellular calibrators

    Get PDF
    Residual disease in chronic myeloid leukemia (CML) patients undergoing therapy with tyrosine kinase inhibitors (TKIs) is measured by assessing the quantity of transcripts of the BCR-ABL1 fusion gene in peripheral white blood cells. This analysis is based on reverse-transcription quantitative PCR (RT–qPCR) technology; however, the wide array of methods used worldwide has led to large variation in quantitative BCR-ABL1 measurements, which hamper inter-laboratory comparative studiesFil: Ruiz, María Sol. Fundación Cáncer. Centro de Investigaciones Oncológicas; ArgentinaFil: Medina, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Tapia, I.. Fundación Cáncer. Centro de Investigaciones Oncológicas; ArgentinaFil: Mordoh, Jose. Fundación Cáncer. Centro de Investigaciones Oncológicas; ArgentinaFil: Cross, N. C. P.. Universidad de Southampton Uk; Reino UnidoFil: Larripa, Irene Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Bianchini, Michele. Fundación Cáncer. Centro de Investigaciones Oncológicas; Argentin

    Detecting slope and urban potential unstable areas by means of multi-platform remote sensing techniques: the Volterra (Italy) case study

    Get PDF
    Volterra (Central Italy) is a town of great historical interest, due to its vast and well-preserved cultural heritage, including a 2.6 km long Etruscan-medieval wall enclosure representing one of the most important elements. Volterra is located on a clayey hilltop prone to landsliding, soil erosion, therefore the town is subject to structural deterioration. During 2014, two impressive collapses occurred on the wall enclosure in the southwestern urban sector. Following these events, a monitoring campaign was carried out by means of remote sensing techniques, such as space-borne (PS-InSAR) and ground-based (GB-InSAR) radar interferometry, in order to analyze the displacements occurring both in the urban area and the surrounding slopes, and therefore to detect possible critical sectors with respect to instability phenomena. Infrared thermography (IRT) was also applied with the aim of detecting possible criticalities on the wall-enclosure, with special regards to moisture and seepage areas. PS-InSAR data allowed a stability back-monitoring on the area, revealing 19 active clusters displaying ground velocity higher than 10 mm/year in the period 2011–2015. The GB-InSAR system detected an acceleration up to 1.7 mm/h in near-real time as the March 2014 failure precursor. The IRT technique, employed on a double survey campaign, in both dry and rainy conditions, permitted to acquire 65 thermograms covering 23 sectors of the town wall, highlighting four thermal anomalies. The outcomes of this work demonstrate the usefulness of different remote sensing technologies for deriving information in risk prevention and management, and the importance of choosing the appropriate technology depending on the target, time sampling and investigation scale. In this paper, the use of a multi-platform remote sensing system permitted technical support of the local authorities and conservators, providing a comprehensive overview of the Volterra site, its cultural heritage and landscape, both in near-real time and back-analysis and at different scales of investigation

    A study of rotating globular clusters - the case of the old, metal-poor globular cluster NGC 4372

    Full text link
    Aims: We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution. Methods: We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. Using this kinematic data set we build a velocity dispersion profile and a systemic rotation curve. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a MCMC fitting algorithm. From this we derive the cluster's half-light radius and ellipticity as r_h=3.4'+/-0.04' and e=0.08+/-0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model. Results: Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5 km/s) for its metallicity. This, however, puts it in line with two other exceptional, very metal-poor GCs - M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC M_dyn=2.0+/-0.5 x 10^5 M_Sun based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M_Sun/L_Sun, representative of an old, purely stellar population.Comment: Accepted for publication in A&A, 12 pages, 14 figures, 2 table

    Steady nearly incompressible vector fields in 2D: chain rule and renormalization

    Get PDF
    Given bounded vector field bcolonRRdoRRdbcolon RR^d o RR^d, scalar field ucolonRRdoRRucolon RR^d o RR and a smooth function etacolonRRoRReta colon RR o RR we study the characterization of the distribution div(eta(u)b)div(eta(u)b) in terms of divbdiv b and div(ub)div(u b). In the case of BVBV vector fields bb (and under some further assumptions) such characterization was obtained by L. Ambrosio, C. De Lellis and J. Mal'y, up to an error term which is a measure concentrated on so-called emph{tangential set} of bb. We answer some questions posed in their paper concerning the properties of this term. In particular we construct a nearly incompressible BVBV vector field bb and a bounded function uu for which this term is nonzero. For steady nearly incompressible vector fields bb (and under some further assumptions) in case when d=2d=2 we provide complete characterization of div(eta(u)b)div(eta(u) b) in terms of divbdiv b and div(ub)div(u b). Our approach relies on the structure of level sets of Lipschitz functions on RR2RR^2 obtained by G. Alberti, S. Bianchini and G. Crippa. Extending our technique we obtain new sufficient conditions when any bounded weak solution uu of dtu+bcdotablau=0d_t u + b cdot abla u=0 is emph{renormalized}, i.e. also solves dteta(u)+bcdotablaeta(u)=0d_t eta(u) + b cdot abla eta(u)=0 for any smooth function etacolonRRoRReta colonRR o RR. As a consequence we obtain new uniqueness result for this equation

    Effects of earthquakes with different nature on the seismic performance of masonry vaults

    Get PDF
    Past seismic events showed that earthquakes can cause severe damages in masonry vaulted structures, which can lead to significant damage, including fatalities, and heritage and economic losses. Although seismic guidelines suggest the implementation of specific modern strengthening techniques to prevent those seismic losses, many masonry vaulted structures are unreinforced and they are one of the most vulnerable structural elements in monumental buildings, such as churches and palaces. Thus, the present paper focuses on the seismic performance of a numerical model, which simulates an experimental reduced-scale dry-joints vault, through the nonlinear dynamic analysis, by applying several earthquakes of different nature. The numerical model was built based on the discrete element method, where it is possible to simulate the detailed geometrical properties: the interlocking between the blocks, the cuts along the diagonals, the offset of the units and the boundary conditions. Moreover, the model was calibrated based on results obtained from shake table tests. The results of this sensitivity analysis, obtained from the different inputs, are compared in terms of damage patterns.- (undefined

    The Monge problem in Wiener Space

    Full text link
    We address the Monge problem in the abstract Wiener space and we give an existence result provided both marginal measures are absolutely continuous with respect to the infinite dimensional Gaussian measure {\gamma}
    corecore