7 research outputs found
Asymptotics of Spinfoam Amplitude on Simplicial Manifold: Lorentzian Theory
The present paper studies the large-j asymptotics of the Lorentzian EPRL
spinfoam amplitude on a 4d simplicial complex with an arbitrary number of
simplices. The asymptotics of the spinfoam amplitude is determined by the
critical configurations. Here we show that, given a critical configuration in
general, there exists a partition of the simplicial complex into three type of
regions R_{Nondeg}, R_{Deg-A}, R_{Deg-B}, where the three regions are
simplicial sub-complexes with boundaries. The critical configuration implies
different types of geometries in different types of regions, i.e. (1) the
critical configuration restricted into R_{Nondeg} is degenerate of type-A in our definition of degeneracy, but implies
a nondegenerate discrete Euclidean geometry on R_{Deg-A}, (3) the critical
configuration restricted into R_{Deg-B} is degenerate of type-B, and implies a
vector geometry on R_{Deg-B}. With the critical configuration, we further make
a subdivision of the regions R_{Nondeg} and R_{Deg-A} into sub-complexes (with
boundary) according to their Lorentzian/Euclidean oriented 4-simplex volume
V_4(v), such that sgn(V_4(v)) is a constant sign on each sub-complex. Then in
the each sub-complex, the spinfoam amplitude at the critical configuration
gives the Regge action in Lorentzian or Euclidean signature respectively on
R_{Nondeg} or R_{Deg-A}. The Regge action reproduced here contains a sign
factor sgn(V_4(v)) of the oriented 4-simplex volume. Therefore the Regge action
reproduced here can be viewed a discretized Palatini action with on-shell
connection. Finally the asymptotic formula of the spinfoam amplitude is given
by a sum of the amplitudes evaluated at all possible critical configurations,
which are the products of the amplitudes associated to different type of
geometries.Comment: 54 pages, 2 figures, reference adde
Loop quantum gravity: the first twenty five years
This is a review paper invited by the journal "Classical ad Quantum Gravity"
for a "Cluster Issue" on approaches to quantum gravity. I give a synthetic
presentation of loop gravity. I spell-out the aims of the theory and compare
the results obtained with the initial hopes that motivated the early interest
in this research direction. I give my own perspective on the status of the
program and attempt of a critical evaluation of its successes and limits.Comment: 24 pages, 3 figure
Poincare 2-group and quantum gravity
We show that General Relativity can be formulated as a constrained
topological theory for flat 2-connections associated to the Poincar\'e 2-group.
Matter can be consistently coupled to gravity in this formulation. We also show
that the edge lengths of the spacetime manifold triangulation arise as the
basic variables in the path-integral quantization, while the state-sum
amplitude is an evaluation of a colored 3-complex, in agreement with the
category theory results. A 3-complex amplitude for Euclidean quantum gravity is
proposed.Comment: v3: published versio
The Holst Spin Foam Model via Cubulations
Spin foam models are an attempt for a covariant, or path integral formulation
of canonical loop quantum gravity. The construction of such models usually rely
on the Plebanski formulation of general relativity as a constrained BF theory
and is based on the discretization of the action on a simplicial triangulation,
which may be viewed as an ultraviolet regulator. The triangulation dependence
can be removed by means of group field theory techniques, which allows one to
sum over all triangulations. The main tasks for these models are the correct
quantum implementation of the Plebanski constraints, the existence of a
semiclassical sector implementing additional "Regge-like" constraints arising
from simplicial triangulations, and the definition of the physical inner
product of loop quantum gravity via group field theory. Here we propose a new
approach to tackle these issues stemming directly from the Holst action for
general relativity, which is also a proper starting point for canonical loop
quantum gravity. The discretization is performed by means of a "cubulation" of
the manifold rather than a triangulation. We give a direct interpretation of
the resulting spin foam model as a generating functional for the n-point
functions on the physical Hilbert space at finite regulator. This paper focuses
on ideas and tasks to be performed before the model can be taken seriously.
However, our analysis reveals some interesting features of this model: first,
the structure of its amplitudes differs from the standard spin foam models.
Second, the tetrad n-point functions admit a "Wick-like" structure. Third, the
restriction to simple representations does not automatically occur -- unless
one makes use of the time gauge, just as in the classical theory.Comment: 25 pages, 1 figure; v3: published version. arXiv admin note:
substantial text overlap with arXiv:0911.213
Laplacians on discrete and quantum geometries
We extend discrete calculus for arbitrary (-form) fields on embedded
lattices to abstract discrete geometries based on combinatorial complexes. We
then provide a general definition of discrete Laplacian using both the primal
cellular complex and its combinatorial dual. The precise implementation of
geometric volume factors is not unique and, comparing the definition with a
circumcentric and a barycentric dual, we argue that the latter is, in general,
more appropriate because it induces a Laplacian with more desirable properties.
We give the expression of the discrete Laplacian in several different sets of
geometric variables, suitable for computations in different quantum gravity
formalisms. Furthermore, we investigate the possibility of transforming from
position to momentum space for scalar fields, thus setting the stage for the
calculation of heat kernel and spectral dimension in discrete quantum
geometries.Comment: 43 pages, 2 multiple figures. v2: discussion improved, references
added, minor typos correcte