20,948 research outputs found

    SL(2,Z) Multiplets in N=4 SYM Theory

    Full text link
    We discuss the action of SL(2,Z) on local operators in D=4, N=4 SYM theory in the superconformal phase. The modular property of the operator's scaling dimension determines whether the operator transforms as a singlet, or covariantly, as part of a finite or infinite dimensional multiplet under the SL(2,Z) action. As an example, we argue that operators in the Konishi multiplet transform as part of a (p,q) PSL(2,Z) multiplet. We also comment on the non-perturbative local operators dual to the Konishi multiplet.Comment: 14 pages, harvmac; v2: published version with minor change

    Single Spin Asymmetries in Semi-Inclusive Electroproduction: Access to Transversity

    Get PDF
    We discuss the quark transversity distribution function and a possible way to access it through the measurement of single spin azimuthal asymmetry in semi-inclusive single pion electroproduction on a transversely polarized target.Comment: 5 pages, Latex using aipproc.sty (included), to appear in proceedings of "Second Workshop on Physics with an Electron Polarized Light Ion Collider", Sept. 14-16, 2000, MIT, Cambridge, US

    The EPRL intertwiners and corrected partition function

    Full text link
    Do the SU(2) intertwiners parametrize the space of the EPRL solutions to the simplicity constraint? What is a complete form of the partition function written in terms of this parametrization? We prove that the EPRL map is injective for n-valent vertex in case when it is a map from SO(3) into SO(3)xSO(3) representations. We find, however, that the EPRL map is not isometric. In the consequence, in order to be written in a SU(2) amplitude form, the formula for the partition function has to be rederived. We do it and obtain a new, complete formula for the partition function. The result goes beyond the SU(2) spin-foam models framework.Comment: RevTex4, 15 pages, 5 figures; theorem of injectivity of EPRL map correcte

    Asymptotics of LQG fusion coefficients

    Full text link
    The fusion coefficients from SO(3) to SO(4) play a key role in the definition of spin foam models for the dynamics in Loop Quantum Gravity. In this paper we give a simple analytic formula of the EPRL fusion coefficients. We study the large spin asymptotics and show that they map SO(3) semiclassical intertwiners into SU(2)LĂ—SU(2)RSU(2)_L\times SU(2)_R semiclassical intertwiners. This non-trivial property opens the possibility for an analysis of the semiclassical behavior of the model.Comment: 14 pages, minor change

    Simple model for quantum general relativity from loop quantum gravity

    Full text link
    New progress in loop gravity has lead to a simple model of `general-covariant quantum field theory'. I sum up the definition of the model in self-contained form, in terms accessible to those outside the subfield. I emphasize its formulation as a generalized topological quantum field theory with an infinite number of degrees of freedom, and its relation to lattice theory. I list the indications supporting the conjecture that the model is related to general relativity and UV finite.Comment: 8 pages, 3 figure

    Hierarchy of general invariants for bivariate LPDOs

    Full text link
    We study invariants under gauge transformations of linear partial differential operators on two variables. Using results of BK-factorization, we construct hierarchy of general invariants for operators of an arbitrary order. Properties of general invariants are studied and some examples are presented. We also show that classical Laplace invariants correspond to some particular cases of general invariants.Comment: to appear in J. "Theor.Math.Phys." in May 200

    Precision Spectroscopy and Higher Spin symmetry in the ABJM model

    Get PDF
    We revisit Kaluza-Klein compactification of 11-d supergravity on S^7/Z_k using group theory techniques that may find application in other flux vacua with internal coset spaces. Among the SO(2) neutral states, we identify marginal deformations and fields that couple to the recently discussed world-sheet instanton of Type IIA on CP^3. We also discuss charged states, dual to monopole operators, and the Z_k projection of the Osp(4|8) singleton and its tensor products. In particular, we show that the doubleton spectrum may account for N=6 higher spin symmetry enhancement in the limit of vanishing 't Hooft coupling in the boundary Chern-Simons theory.Comment: 44 page

    Massive higher spins and holography

    Full text link
    We review recent progress towards the understanding of higher spin gauge symmetry breaking in AdS space from a holographic vantage point. According to the AdS/CFT correspondence, N=4 SYM theory at vanishing coupling constant should be dual to a theory in AdS which exhibits higher spin gauge symmetry enhancement. When the SYM coupling is non-zero, all but a handful of HS currents are violated by anomalies, and correspondingly local higher spin symmetry in the bulk gets spontaneously broken. In agreement with previous results and holographic expectations, we find that, barring one notable exception (spin 1 eating spin 0), the Goldstone modes responsible for HS symmetry breaking in AdS have non-vanishing mass even in the limit in which the gauge symmetry is restored. We show that spontaneous breaking a' la Stueckelberg implies that the mass of the relevant spin s'=s-1 Goldstone field is exactly the one predicted by the correspondence.Comment: 8 pages, talk presented by M.B. at the "Fourth Meeting on Constrained Dynamics and Quantum gravity" held in Cala Gonone (Sardinia, Italy), September 12-16, 200

    Holographic (De)confinement Transitions in Cosmological Backgrounds

    Full text link
    For type IIB supergravity with a running axio-dilaton, we construct bulk solutions which admit a cosmological background metric of Friedmann-Robertson-Walker type. These solutions include both a dark radiation term in the bulk as well as a four-dimensional (boundary) cosmological constant, while gravity at the boundary remains non-dynamical. We holographically calculate the stress-energy tensor, showing that it consists of two contributions: The first one, generated by the dark radiation term, leads to the thermal fluid of N = 4 SYM theory, while the second, the conformal anomaly, originates from the boundary cosmological constant. Conservation of the boundary stress tensor implies that the boundary cosmological constant is time-independent, such that there is no exchange between the two stress-tensor contributions. We then study (de)confinement by evaluating the Wilson loop in these backgrounds. While the dark radiation term favours deconfinement, a negative cosmological constant drives the system into a confined phase. When both contributions are present, we find an oscillating universe with negative cosmological constant which undergoes periodic (de)confinement transitions as the scale of three space expands and re-contracts.Comment: 31 pages, 5 figures, v2: Reference adde

    Simplifying one-loop amplitudes in superstring theory

    Get PDF
    We show that 4-point vector boson one-loop amplitudes, computed in ref.[1] in the RNS formalism, around vacuum configurations with open unoriented strings, preserving at least N=1 SUSY in D=4, satisfy the correct supersymmetry Ward identities, in that they vanish for non MHV configurations (++++) and (-+++). In the MHV case (--++) we drastically simplify their expressions. We then study factorisation and the limiting IR and UV behaviour and find some unexpected results. In particular no massless poles are exposed at generic values of the modular parameter. Relying on the supersymmetric properties of our bosonic amplitudes, we extend them to manifestly supersymmetric super-amplitudes and compare our results with those obtained in the D=4 hybrid formalism, pointing out difficulties in reconciling the two approaches for contributions from N=1,2 sectors.Comment: 38 pages plus appendice
    • …
    corecore