19,854 research outputs found
Regret Bounds for Reinforcement Learning with Policy Advice
In some reinforcement learning problems an agent may be provided with a set
of input policies, perhaps learned from prior experience or provided by
advisors. We present a reinforcement learning with policy advice (RLPA)
algorithm which leverages this input set and learns to use the best policy in
the set for the reinforcement learning task at hand. We prove that RLPA has a
sub-linear regret of \tilde O(\sqrt{T}) relative to the best input policy, and
that both this regret and its computational complexity are independent of the
size of the state and action space. Our empirical simulations support our
theoretical analysis. This suggests RLPA may offer significant advantages in
large domains where some prior good policies are provided
An efficient algorithm for learning with semi-bandit feedback
We consider the problem of online combinatorial optimization under
semi-bandit feedback. The goal of the learner is to sequentially select its
actions from a combinatorial decision set so as to minimize its cumulative
loss. We propose a learning algorithm for this problem based on combining the
Follow-the-Perturbed-Leader (FPL) prediction method with a novel loss
estimation procedure called Geometric Resampling (GR). Contrary to previous
solutions, the resulting algorithm can be efficiently implemented for any
decision set where efficient offline combinatorial optimization is possible at
all. Assuming that the elements of the decision set can be described with
d-dimensional binary vectors with at most m non-zero entries, we show that the
expected regret of our algorithm after T rounds is O(m sqrt(dT log d)). As a
side result, we also improve the best known regret bounds for FPL in the full
information setting to O(m^(3/2) sqrt(T log d)), gaining a factor of sqrt(d/m)
over previous bounds for this algorithm.Comment: submitted to ALT 201
Simplifying one-loop amplitudes in superstring theory
We show that 4-point vector boson one-loop amplitudes, computed in ref.[1] in
the RNS formalism, around vacuum configurations with open unoriented strings,
preserving at least N=1 SUSY in D=4, satisfy the correct supersymmetry Ward
identities, in that they vanish for non MHV configurations (++++) and (-+++).
In the MHV case (--++) we drastically simplify their expressions. We then study
factorisation and the limiting IR and UV behaviour and find some unexpected
results. In particular no massless poles are exposed at generic values of the
modular parameter. Relying on the supersymmetric properties of our bosonic
amplitudes, we extend them to manifestly supersymmetric super-amplitudes and
compare our results with those obtained in the D=4 hybrid formalism, pointing
out difficulties in reconciling the two approaches for contributions from N=1,2
sectors.Comment: 38 pages plus appendice
Evolution of the disc atmosphere in the X-ray binary MXB 1659-298, during its 2015-2017 outburst
We report on the evolution of the X-ray emission of the accreting neutron
star (NS) low mass X-ray binary (LMXB), MXB 1659-298, during its most recent
outburst in 2015-2017. We detected 60 absorption lines during the soft state
(of which 21 at more than 3 ), that disappeared in the hard state
(e.g., the Fe xxv and Fe xxvi lines). The absorbing plasma is at rest, likely
part of the accretion disc atmosphere. The bulk of the absorption features can
be reproduced by a high column density () of highly
ionised () plasma. Its disappearance during the
hard state is likely the consequence of a thermal photo-ionisation instability.
MXB 1659-298's continuum emission can be described by the sum of an absorbed
disk black body and its Comptonised emission, plus a black body component. The
observed spectral evolution with state is in line with that typically observed
in atoll and stellar mass black hole LMXB. The presence of a relativistic Fe
K disk-line is required during the soft state. We also tentatively
detect the Fe xxii doublet, whose ratio suggests an electron density of the
absorber of , hence, the absorber is likely located at
from the illuminating source, well inside the Compton and
outer disc radii. MXB 1659-298 is the third well monitored atoll LMXB
showcasing intense Fe xxv and Fe xxvi absorption during the soft state that
disappears during the hard state.Comment: MNRAS in pres
Superconductivity without Fe or Ni in the phosphides BaIr2P2 and BaRh2P2
Heat capacity, resistivity, and magnetic susceptibility measurements confirm
bulk superconductivity in single crystals of BaIrP (T=2.1K) and
BaRhP (T = 1.0 K). These compounds form in the ThCrSi (122)
structure so they are isostructural to both the Ni and Fe pnictides but not
isoelectronic to either of them. This illustrates the importance of structure
for the occurrence of superconductivity in the 122 pnictides. Additionally, a
comparison between these and other ternary phosphide superconductors suggests
that the lack of interlayer bonding favors superconductivity. These
stoichiometric and ambient pressure superconductors offer an ideal playground
to investigate the role of structure for the mechanism of superconductivity in
the absence of magnetism.Comment: Published in Phys Rev B: Rapid Communication
Precision Spectroscopy and Higher Spin symmetry in the ABJM model
We revisit Kaluza-Klein compactification of 11-d supergravity on S^7/Z_k
using group theory techniques that may find application in other flux vacua
with internal coset spaces. Among the SO(2) neutral states, we identify
marginal deformations and fields that couple to the recently discussed
world-sheet instanton of Type IIA on CP^3. We also discuss charged states, dual
to monopole operators, and the Z_k projection of the Osp(4|8) singleton and its
tensor products. In particular, we show that the doubleton spectrum may account
for N=6 higher spin symmetry enhancement in the limit of vanishing 't Hooft
coupling in the boundary Chern-Simons theory.Comment: 44 page
Holographic (De)confinement Transitions in Cosmological Backgrounds
For type IIB supergravity with a running axio-dilaton, we construct bulk
solutions which admit a cosmological background metric of
Friedmann-Robertson-Walker type. These solutions include both a dark radiation
term in the bulk as well as a four-dimensional (boundary) cosmological
constant, while gravity at the boundary remains non-dynamical. We
holographically calculate the stress-energy tensor, showing that it consists of
two contributions: The first one, generated by the dark radiation term, leads
to the thermal fluid of N = 4 SYM theory, while the second, the conformal
anomaly, originates from the boundary cosmological constant. Conservation of
the boundary stress tensor implies that the boundary cosmological constant is
time-independent, such that there is no exchange between the two stress-tensor
contributions. We then study (de)confinement by evaluating the Wilson loop in
these backgrounds. While the dark radiation term favours deconfinement, a
negative cosmological constant drives the system into a confined phase. When
both contributions are present, we find an oscillating universe with negative
cosmological constant which undergoes periodic (de)confinement transitions as
the scale of three space expands and re-contracts.Comment: 31 pages, 5 figures, v2: Reference adde
Evidence for spin liquid ground state in SrDyO frustrated magnet probed by muSR
Muon spin relaxation (SR) measurements were carried out on
SrDyO, a frustrated magnet featuring short range magnetic correlations
at low temperatures. Zero-field muon spin depolarization measurements
demonstrate that fast magnetic fluctuations are present from K down to
20 mK. The coexistence of short range magnetic correlations and fluctuations at
mK indicates that SrDyO features a spin liquid ground state.
Large longitudinal fields affect weakly the muon spin depolarization, also
suggesting the presence of fast fluctuations. For a longitudinal field of
T, a non-relaxing asymmetry contribution appears below K,
indicating considerable slowing down of the magnetic fluctuations as
field-induced magnetically-ordered phases are approached.Comment: 6 pages, 4 figures, to be published as a proceeding of HFM2016 in
Journal of Physics: Conference Series (JPCS
On stable higher spin states in Heterotic String Theories
We study properties of 1/2 BPS Higher Spin states in heterotic
compactifications with extended supersymmetry. We also analyze non BPS Higher
Spin states and give explicit expressions for physical vertex operators of the
first two massive levels. We then study on-shell tri-linear couplings of these
Higher Spin states and confirm that BPS states with arbitrary spin cannot decay
into lower spin states in perturbation theory. Finally, we consider scattering
of vector bosons off higher spin BPS states and extract form factors and
polarization effects in various limits.Comment: 38 page
- …