10 research outputs found

    A systematic review on 'Foveal Crowding' in visually impaired children and perceptual learning as a method to reduce Crowding

    Get PDF
    Contains fulltext : 102577.pdf (publisher's version ) (Open Access)Background - This systematic review gives an overview of foveal crowding (the inability to recognize objects due to surrounding nearby contours in foveal vision) and possible interventions. Foveal crowding can have a major effect on reading rate and deciphering small pieces of information from busy visual scenes. Three specific groups experience more foveal crowding than adults with normal vision (NV): 1) children with NV, 2) visually impaired (VI ) children and adults and 3) children with cerebral visual impairment (CVI). The extent and magnitude of foveal crowding as well as interventions aimed at reducing crowding were investigated in this review. The twofold goal of this review is : [A] to compare foveal crowding in children with NV, VI children and adults and CVI children and [B] to compare interventions to reduce crowding. Methods - Three electronic databases were used to conduct the literature search: PubMed, PsycINFO (Ovid), and Cochrane. Additional studies were identified by contacting experts. Search terms included visual perception, contour interaction, crowding, crowded, and contour interactions. Results - Children with normal vision show an extent of contour interaction over an area 1.5-3x as large as that seen in adults NV. The magnitude of contour interaction normally ranges between 1-2 lines on an acuity chart and this magnitude is even larger when stimuli are arranged in a circular configuration. Adults with congenital nystagmus (CN) show interaction areas that are 2x larger than those seen adults with NV. The magnitude of the crowding effect is also 2x as large in individuals with CN as in individuals with NV. Finally, children with CVI experience a magnitude of the crowding effect that is 3x the size of that experienced by adults with NV. Conclusions - The methodological heterogeneity, the diversity in paradigms used to measure crowding, made it impossible to conduct a meta-analysis. This is the first systematic review to compare crowding ratios and it shows that charts with 50% interoptotype spacing were most sensitive to capture crowding effects. The groups that showed the largest crowding effects were individuals with CN, VI adults with central scotomas and children with CVI. Perceptual Learning seems to be a promising technique to reduce excessive foveal crowding effects.14 p

    Assessment of near visual acuity in 0–13 year olds with normal and low vision: a systematic review

    Get PDF
    Contains fulltext : 168206.pdf (publisher's version ) (Open Access)BACKGROUND: The inclusion for rehabilitation of visually impaired children is partly based on the measurement of near vision, but guidelines for near visual acuity assessment are currently lacking. The twofold purpose of this systematic review was to: (i) provide an overview of the impact of the chart design on near visual acuity measured, and (ii) determine the method of choice for near vision assessments in children of different developmental ages. METHODS: A literature search was conducted by using the following electronic databases: PubMed, Cochrane Library, and EMBASE. The last search was run on March 26th 2016. Additional studies were identified by contacting experts and searching for relevant articles in reference lists of included studies. Search terms were: vision test(s), vision assessment(s), visual acuity, chart(s) and near. RESULTS: For children aged 0-3 years the golden standard is still the preferential looking procedure. Norms are available for this procedure for 6-36 month old children. For 4-7 year olds, we recommend using the LEA symbols, because these symbols have been properly validated and can be used in preliterate children. Responses can be verbal or by matching the target symbol. In children aged 8-13 years, the recommended method is the ETDRS letter chart, because letter acuity is more predictive for functional vision and reading than symbol acuity. In 8-13 year olds, letter acuity is 0.1-0.2 logMAR poorer than symbol acuity. CONCLUSIONS: Chart design, viewing distance, and threshold choice have a serious impact on near visual acuity measurements. Near visual acuity measured with symbols is lower than near visual acuity measured with gratings, and near visual acuity measured with letters is lower than near visual acuity measured with symbols. Viewing distance, chart used, and letter spacing should be adapted to the child's development and reported in order to allow comparisons between measurements

    Eye Movements, Strabismus, Amblyopia and Neuro-Ophthalmology Perceptual Learning in Children With Infantile Nystagmus: Effects on 2D Oculomotor Behavior

    No full text
    Citation: Huurneman B, Boonstra FN, Goossens J. Perceptual learning in children with infantile nystagmus: effects on 2D oculomotor behavior. Invest Ophthalmol Vis Sci. 2016;57: 2016;57:4229-4238. DOI:10.1167/ iovs.16-19555 PURPOSE. To determine changes in oculomotor behavior after 10 sessions of perceptual learning on a letter discrimination task in children with infantile nystagmus (IN). METHODS. Children with IN (18 children with idiopathic IN and 18 with oculocutaneous albinism accompanied by IN) aged 6 to 11 years were divided into two training groups matched on diagnosis: an uncrowded training group (n ¼ 18) and a crowded training group (n ¼ 18). Target letters always appeared briefly (500 ms) at an eccentric location, forcing subjects to quickly redirect their gaze. Training occurred twice per week for 5 consecutive weeks (3500 trials total). Norm data and test-retest values were collected from children with normal vision (n ¼ 11). Outcome measures were: nystagmus characteristics (amplitude, frequency, intensity, and the expanded nystagmus acuity function); fixation stability (the bivariate contour ellipse area and foveation time); and saccadic eye movements (latencies and accuracy) made during a simple saccade task and a crowded letter-identification task. RESULTS. After training, saccadic responses of children with IN improved on the saccade task (latencies decreased by 14 6 4 ms and gains increased by 0.03 6 0.01), but not on the crowded letter task. There were also no training-induced changes in nystagmus characteristics and fixation stability. Although children with normal vision had shorter latencies in the saccade task (47 6 14 ms at baseline), test-retest changes in their saccade gains and latencies were almost equal to the training effects observed in children with IN. CONCLUSIONS. Our results suggest that the improvement in visual performance after perceptual learning in children with IN is primarily due to improved sensory processing rather than improved two-dimensional oculomotor behavior

    Childhood cerebral visual impairment subtype classification based on an extensive versus a limited test battery

    Get PDF
    Purpose: To classify CVI subtypes and compare the added value of an extensive test battery over a limited test battery in subtype classification of cerebral visual impairment (CVI) in children. Methods: Seventy-five children with a clinical diagnosis of CVI (median [IQR] age: 9 [7–12] years) were identified from the medical records. The extensive test battery included visual acuity, contrast sensitivity, ocular alignment, eye movement analysis, visual field analysis, optic nerve head evaluation, and evaluation of visual perception. The limited test battery included visual acuity, contrast sensitivity, ocular alignment, and evaluation of visual perception. Principal component analysis (PCA) followed by cluster analysis was done, for both test batteries separately, to determine the optimum subtype classification for CVI. Results: Fifty-one participants with an extensive test battery with mild to moderate visual impairment were included in the main analysis. This resulted in four CVI subtypes for the extensive test battery (subtle characteristics, higher-level visual function deficits, lower-level visual function deficits, and higher- and lower- level visual function deficits) and three CVI subtypes for the limited test battery (subtle characteristics, higher-level visual function deficits, and higher- and lower- level visual function deficits). There were significant differences between the subtypes for 9 out of 10 measures of the extensive and all 4 measures of the limited test battery (p &lt; 0.05). The subtle characteristics subtype (extensive n = 19, limited n = 15) showed near normal lower and higher-level visual functions in both test batteries. The higher-level visual function deficits subtype (extensive n = 18, limited n = 24) showed near normal visual acuity combined with significant visual perceptual deficits in both test batteries; accompanied by visual pathways defects and abnormal eye movement behavior in the extensive test battery. The higher- and lower- level visual function deficits subtype (extensive n = 4, limited n = 12) showed both higher and lower-level visual function deficits in both test batteries, but application of the extensive test battery revealed additional visual pathways defects and abnormal eye movement behavior. The lower-level visual function deficits CVI subtype (extensive n = 10) was a new subtype identified by the extensive test battery. This subtype showed lower-level visual function deficits together with abnormal eye movement measures. Conclusion: This data-driven study has provided meaningful CVI subtype classifications based on the outcomes of various key functional and structural measures in CVI diagnosis. Comparison of the extensive test battery to the limited test battery revealed the added value of an extensive test battery in classifying CVI. The outcomes of this study, therefore, have provided a new direction in the area of CVI classification.</p

    Childhood cerebral visual impairment subtype classification based on an extensive versus a limited test battery

    Get PDF
    Purpose: To classify CVI subtypes and compare the added value of an extensive test battery over a limited test battery in subtype classification of cerebral visual impairment (CVI) in children. Methods: Seventy-five children with a clinical diagnosis of CVI (median [IQR] age: 9 [7–12] years) were identified from the medical records. The extensive test battery included visual acuity, contrast sensitivity, ocular alignment, eye movement analysis, visual field analysis, optic nerve head evaluation, and evaluation of visual perception. The limited test battery included visual acuity, contrast sensitivity, ocular alignment, and evaluation of visual perception. Principal component analysis (PCA) followed by cluster analysis was done, for both test batteries separately, to determine the optimum subtype classification for CVI. Results: Fifty-one participants with an extensive test battery with mild to moderate visual impairment were included in the main analysis. This resulted in four CVI subtypes for the extensive test battery (subtle characteristics, higher-level visual function deficits, lower-level visual function deficits, and higher- and lower- level visual function deficits) and three CVI subtypes for the limited test battery (subtle characteristics, higher-level visual function deficits, and higher- and lower- level visual function deficits). There were significant differences between the subtypes for 9 out of 10 measures of the extensive and all 4 measures of the limited test battery (p &lt; 0.05). The subtle characteristics subtype (extensive n = 19, limited n = 15) showed near normal lower and higher-level visual functions in both test batteries. The higher-level visual function deficits subtype (extensive n = 18, limited n = 24) showed near normal visual acuity combined with significant visual perceptual deficits in both test batteries; accompanied by visual pathways defects and abnormal eye movement behavior in the extensive test battery. The higher- and lower- level visual function deficits subtype (extensive n = 4, limited n = 12) showed both higher and lower-level visual function deficits in both test batteries, but application of the extensive test battery revealed additional visual pathways defects and abnormal eye movement behavior. The lower-level visual function deficits CVI subtype (extensive n = 10) was a new subtype identified by the extensive test battery. This subtype showed lower-level visual function deficits together with abnormal eye movement measures. Conclusion: This data-driven study has provided meaningful CVI subtype classifications based on the outcomes of various key functional and structural measures in CVI diagnosis. Comparison of the extensive test battery to the limited test battery revealed the added value of an extensive test battery in classifying CVI. The outcomes of this study, therefore, have provided a new direction in the area of CVI classification.</p

    Practice makes perfect:Crowdingtraining improves visual functions in children with visual impairment

    No full text
    Crowding is a visual perceptual phenomenon that refers to impaired ability to recognize a suprathreshold object when it is presented in the vicinity of other objects. Crowding therefore poses a limit on object recognition. The phenomenon is regarded to be one of the reasons why young children need large textbook letters. Several studies have provided evidence that crowding imposes a bottleneck on reading speed, and reading long words. Thus, crowding influences visual perception and object recognition in young children. Recent studies show that crowding is stronger in children with visual impairment than in children with normal vision. But which factors are responsible for these strong crowding effects? And how can we reduce crowding in children with visual impairment for whom low visual acuity in itself already poses a bottleneck on object recognition? This review article tries to answer these questions. This knowledge is useful for educational psychologists, because crowding can interfere with the acquisition of academic skills and reading. Keywords: crowding, learning, visual impairment, visual acuity, visual attention.<br/

    Crowded visual search in children with normal vision and children with visual impairment

    Get PDF
    Contains fulltext : 123733.pdf (publisher's version ) (Open Access)This study investigates the influence of oculomotor control, crowding, and attentional factors on visual search in children with normal vision ([NV], n = 11), children with visual impairment without nystagmus ([VI−nys], n = 11), and children with VI with accompanying nystagmus ([VI+nys], n = 26). Exclusion criteria for children with VI were: multiple impairments and visual acuity poorer than 20/400 or better than 20/50. Three search conditions were presented: a row with homogeneous distractors, a matrix with homogeneous distractors, and a matrix with heterogeneous distractors. Element spacing was manipulated in 5 steps from 2 to 32 minutes of arc. Symbols were sized 2 times the threshold acuity to guarantee visibility for the VI groups. During simple row and matrix search with homogeneous distractors children in the VI+nys group were less accurate than children with NV at smaller spacings. Group differences were even more pronounced during matrix search with heterogeneous distractors. Search times were longer in children with VI compared to children with NV. The more extended impairments during serial search reveal greater dependence on oculomotor control during serial compared to parallel search.10 p

    Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    Get PDF
    <p>PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment.</p><p>METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children with visual impairment were divided into three groups: a magnifier group (n = 12), a crowded perceptual learning group (n = 18), and an uncrowded perceptual learning group (n = 15). Children with normal vision also were divided in three groups, but were measured only at baseline. Dependent variables were single near visual acuity (NVA), crowded NVA, LH line 50% crowding NVA, number of trials, accuracy, performance time, amount of small errors, and amount of large errors. Children with visual impairment trained during six weeks, two times per week, for 30 minutes (12 training sessions).</p><p>RESULTS. After training, children showed significant improvement of NVA in addition to specific improvements on the training task. The crowded perceptual learning group showed the largest acuity improvements (1.7 logMAR lines on the crowded chart, P <0.001). Only the children in the crowded perceptual learning group showed improvements on all NVA charts.</p><p>CONCLUSIONS. Children with visual impairment benefit from perceptual training. While task-specific improvements were observed in all training groups, transfer to crowded NVA was largest in the crowded perceptual learning group. To our knowledge, this is the first study to provide evidence for the improvement of NVA by perceptual learning in children with visual impairment. (http://www.trialregister.nlnumber,NTR2537.)</p>

    Crowded task performance in visually impaired children:Comparing magnifier and large print

    No full text
    <p>This study compares the influence of two different types of magnification (magnifier versus large print) on crowded near vision task performance.</p><p>Fifty-eight visually impaired children aged 4-8 years participated. Participants were divided in two groups, matched on age and near visual acuity (NVA): [1] the magnifier group (4-6 year olds [n = 13] and 7-8 year olds [n = 19]), and [2] the large print group (4-6 year olds [n = 12] and 7-8 year olds [n = 14]). At baseline, single and crowded Landolt C acuity were measured at 40 cm without magnification. Crowded near vision was measured again with magnification. A 90 mm diameter dome magnifier was chosen to avoid measuring the confounding effect of navigational skills. The magnifier provided 1.7x magnification and the large print provided 1.8x magnification. Performance measures: [1] NVA without magnification at 40 cm, [2] near vision with magnification, and [3] response time. Working distance was monitored.</p><p>There was no difference in performance between the two types of magnification for the 4-6 year olds and the 7-8 year olds (p's = .291 and .246, respectively). Average NVA in the 4-6 year old group was 0.95 logMAR without and 0.42 logMAR with magnification (p <.001). Average NVA in the 7-8 year was 0.71 logMAR without and 0.01 logMAR with magnification (p <.001). Stronger crowding effects predicted larger improvements of near vision with magnification (p = .021).</p><p>A magnifier is equally effective as large print in improving the performance of young children with a range of visual acuities on a crowded near vision task. Visually impaired children with stronger crowding effects showed larger improvements when working with magnification.</p>
    corecore