97 research outputs found

    MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix

    Get PDF
    Bone development is dynamically regulated by homeostasis, in which a balance between adipocytes and osteoblasts is maintained. Disruption of this differentiation balance leads to various bone-related metabolic diseases, including osteoporosis. In the present study, a primate-specific microRNA (miR-637) was found to be involved in the differentiation of human mesenchymal stem cells (hMSCs). Our preliminary data indicated that miR-637 suppressed the growth of hMSCs and induced S-phase arrest. Expression of miR-637 was increased during adipocyte differentiation (AD), whereas it was decreased during osteoblast differentiation (OS), which suggests miR-637 could act as a mediator of adipoosteogenic differentiation. Osterix (Osx), a significant transcription factor of osteoblasts, was shown to be a direct target of miR-637, which significantly enhanced AD and suppressed OS in hMSCs through direct suppression of Osx expression. Furthermore, miR-637 also significantly enhanced de novo adipogenesis in nude mice. In conclusion, our data indicated that the expression of miR-637 was indispensable for maintaining the balance of adipocytes and osteoblasts. Disruption of miR-637 expression patterns leads to irreversible damage to the balance of differentiation in bone marrow. © 2011 Zhang et al.published_or_final_versio

    Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets

    Get PDF
    Targeted therapy based on adjustment of microRNA (miRNA)s activity takes great promise due to the ability of these small RNAs to modulate cellular behavior. However, the efficacy of miR-101 replacement therapy to hepatocellular carcinoma (HCC) remains unclear. In the current study, we first observed that plasma levels of miR-101 were significantly lower in distant metastatic HCC patients than in HCCs without distant metastasis, and down-regulation of plasma miR-101 predicted a worse disease-free survival (DFS, P<0.05). In an animal model of HCC, we demonstrated that systemic delivery of lentivirus-mediated miR-101 abrogated HCC growth in the liver, intrahepatic metastasis and distant metastasis to the lung and to the mediastinum, resulting in a dramatic suppression of HCC development and metastasis in mice without toxicity and extending life expectancy. Furthermore, enforced overexpression of miR-101 in HCC cells not only decreased EZH2, COX2 and STMN1, but also directly down-regulated a novel target ROCK2, inhibited Rho/Rac GTPase activation, and blocked HCC cells epithelial-mesenchymal transition (EMT) and angiogenesis, inducing a strong abrogation of HCC tumorigenesis and aggressiveness both in vitro and in vivo. These results provide proof-of-concept support for systemic delivery of lentivirus-mediated miR-101 as a powerful anti-HCC therapeutic modality by repressing multiple molecular targets. © 2015 Zheng et al.published_or_final_versio

    A combination of hard and soft templating for the fabrication of silica hollow microcoils with nanostructured walls

    Get PDF
    Hollow silica microcoils have been prepared by using functionalized carbon microcoils as hard templates and surfactant or amphiphilic dye aggregates as soft templates. The obtained materials have been characterized by electron and optical microscopy, nitrogen sorption and small angle X-ray scattering. The obtained hollow microcoils resemble the original hard templates in shape and size. Moreover, they have mesoporous walls (pore size ≈ 3 nm) with some domains where pores are ordered in a hexagonal array, originated from surfactant micelles. The obtained silica microcoils also show preferential adsorption of cationic fluorescent dyes. A mechanism for the formation of silica microcoils is proposed

    Computer-assisted and fractal-based morphometric assessment of microvascularity in histological specimens of gliomas

    Get PDF
    Fractal analysis is widely applied to investigate the vascular system in physiological as well as pathological states. We propose and examine a computer-aided and fractal-based image analysis technique to quantify the microvascularity in histological specimens of WHO grade II and III gliomas. A computer-aided and fractal-based analysis was used to describe the microvessels and to quantify their geometrical complexity in histological specimens collected from 17 patients. The statistical analysis showed that the fractal-based indexes are the most discriminant parameters to describe the microvessels. The computer-aided quantitative analysis also showed that grade III gliomas are generally more vascularized than grade II gliomas. The fractal parameters are reliable quantitative indicators of the neoplastic microvasculature, making them potential surrogate biomarkers. The qualitative evaluation currently performed by the neuropathologist can be combined with the computer-assisted quantitative analysis of the microvascularity to improve the diagnosis and optimize the treatment of patients with brain cancer

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Chemokine receptor CXCR4 expression in hepatocellular carcinoma patients increases the risk of bone metastases and poor survival

    Get PDF
    Abstract Background The chemokine and bone marrow-homing receptor CXCR4 is implicated in metastases of various cancers. This study was conducted to analyze the association of CXCR4 expression with hepatocellular carcinoma (HCC) bone metastasis and patient survival. Methods Tumor tissue from HCC patients with (n = 43) and without (n = 138) bone metastasis was subjected to immunohistochemical staining for CXCR4 using tissue microarrays. Immunoreactivity was evaluated semi-quantitatively. A receiver-operating characteristic-based approach and logistical regression analysis were used to determine the predictive value of clinicopathologic factors, including CXCR4 expression, in bone metastasis. Patient survival was analyzed by Kaplan-Meier curves and log-rank tests. Results CXCR4 overexpression was detected in 34 of 43 (79.1%) patients with bone metastases and in 57 of 138 (41.3%) without bone metastases. CXCR4 expression correlated with (correlation coefficient: 0.551, P predictive of HCC bone metastases (AUC: 0.689; 95%CI: 0.601 – 0.776; P ). CXCR4 staining intensity correlated with the bone metastasis-free survival (correlation coefficient: -0.359; P = 0.018). CXCR4 overexpression in primary tumors (n = 91) decreased overall median survival (18.0 months vs. 36.0 months, P 0.001). Multivariable analysis identified CXCR4 as a strong, independent risk factor for reduced disease-free survival (relative risk [RR]: 5.440; P = 0.023) and overall survival (RR: 7.082; P = 0.001). Conclusion CXCR4 expression in primary HCCs may be an independent risk factor for bone metastasis and may be associated with poor clinical outcome.</p

    Recombinant humanised anti-HER2/neu antibody (Herceptin®) induces cellular death of glioblastomas

    Get PDF
    Glioblastoma multiforme (GBM) remains the most devastating primary tumour in neuro-oncology. Targeting of the human epithelial receptor type 2 (HER2)-neu receptor by specific antibodies is a recent well-established therapy for breast tumours. Human epithelial receptor type 2/neu is a transmembrane tyrosine/kinase receptor that appears to be important for the regulation of cancer growth. Human epithelial receptor type 2/neu is not expressed in the adult central nervous system, but its expression increases with the degree of astrocytoma anaplasia. The specificity of HER2/neu for tumoral astrocytomas leads us to study in vitro treatment of GBM with anti-HER2/neu antibody. We used human GBM cell lines expressing HER2/neu (A172 express HER2/neu more than U251MG) or not (U87MG) and monoclonal humanised antibody against HER2/neu (Herceptin®). Human epithelial receptor type 2/neu expression was measured by immunohistochemistry and flow cytometry. Direct antibody effect, complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity were evaluated by different cytometric assays. We have shown, for the first time, the ability of anti-HER2/neu antibodies to induce apoptosis and cellular-dependent cytotoxicity of HER2/neu-expressing GBM cell lines. The results decreased from A172 to U251 and were negative for U87MG, in accordance with the decreasing density of HER2/neu receptors

    Protein alterations associated with temozolomide resistance in subclones of human glioblastoma cell lines

    Get PDF
    Temozolomide (TMZ) is the standard chemotherapeutic agent for human malignant glioma, but intrinsic or acquired chemoresistance represents a major obstacle to successful treatment of this highly lethal group of tumours. Obtaining better understanding of the molecular mechanisms underlying TMZ resistance in malignant glioma is important for the development of better treatment strategies. We have successfully established a passage control line (D54-C10) and resistant variants (D54-P5 and D54-P10) from the parental TMZ-sensitive malignant glioma cell line D54-C0. The resistant sub-cell lines showed alterations in cell morphology, enhanced cell adhesion, increased migration capacities, and cell cycle arrests. Proteomic analysis identified a set of proteins that showed gradual changes in expression according to their 50% inhibitory concentration (IC50). Successful validation was provided by transcript profiling in another malignant glioma cell line U87-MG and its resistant counterparts. Moreover, three of the identified proteins (vimentin, cathepsin D and prolyl 4-hydroxylase, beta polypeptide) were confirmed to be upregulated in high-grade glioma. Our data suggest that acquired TMZ resistance in human malignant glioma is associated with promotion of malignant phenotypes, and our reported molecular candidates may serve not only as markers of chemoresistance but also as potential therapeutic targets in the treatment of TMZ-resistant human malignant glioma, providing a platform for future investigations

    Branching fraction measurements of χc0 and χc2 to π0π0 and ηη

    Get PDF
    Using a sample of 1.06×108 ψ ′ decays collected by the BESIII detector, χc0 and χc2 decays into π0π0 and ηη are studied. The branching fraction results are Br(χc0→π 0π0)=(3.23±0.03±0.23±0.14)×10 -3, Br(χc2→π0π0)=(8.8±0.2±0.6±0.4)×10 -4, Br(χc0→ηη)=(3.44±0.10±0. 24±0.2)×10 -3, and Br(χc2→ηη)=(6. 5±0.4±0.5±0.3)×10 -4, where the uncertainties are statistical, systematic due to this measurement, and systematic due to the branching fractions of ψ ′→ γχcJ. The results provide information on the decay mechanism of χc states into pseudoscalars. © 2010 The American Physical Society.published_or_final_versio
    corecore