8 research outputs found

    Non-differentiable variational principles

    Get PDF
    We develop a calculus of variations for functionals which are defined on a set of non differentiable curves. We first extend the classical differential calculus in a quantum calculus, which allows us to define a complex operator, called the scale derivative, which is the non differentiable analogue of the classical derivative. We then define the notion of extremals for our functionals and obtain a characterization in term of a generalized Euler-Lagrange equation. We finally prove that solutions of the Schr\"odinger equation can be obtained as extremals of a non differentiable variational principle, leading to an extended Hamilton's principle of least action for quantum mechanics. We compare this approach with the scale relativity theory of Nottale, which assumes a fractal structure of space-time.Comment: 20 page

    Scale calculus and the Schrodinger equation

    Full text link
    We introduce the scale calculus, which generalizes the classical differential calculus to non differentiable functions. The new derivative is called the scale difference operator. We also introduce the notions of fractal functions, minimal resolution, and quantum representation of a non differentiable function. We then define a scale quantization procedure for classical Lagrangian systems inspired by the Scale relativity theory developped by Nottale. We prove that the scale quantization of Newtionian mechanics is a non linear Schrodinger equation. Under some specific assumptions, we obtain the classical linear Schrodinger equation.Comment: 49 page

    The Vacuum Structure, Special Relativity and Quantum Mechanics Revisited: a Field Theory No-Geometry Approach within the Lagrangian and Hamiltonian Formalisms. Part 2

    Full text link
    The main fundamental principles characterizing the vacuum field structure are formulated and the modeling of the related vacuum medium and charged point particle dynamics by means of devised field theoretic tools are analyzed. The work is devoted to studying the vacuum structure, special relativity, electrodynamics of interacting charged point particles and quantum mechanics, and is a continuation of \cite{BPT,BRT1}. Based on the vacuum field theory no-geometry approach, the Lagrangian and Hamiltonian reformulation of some alternative classical electrodynamics models is devised. The Dirac type quantization procedure, based on the canonical Hamiltonian formulation, is developed for some alternative electrodynamics models. Within an approach developed a possibility of the combined description both of electrodynamics and gravity is analyzed.Comment: 11 page

    ENTROPY-ENTHALPY COMPENSATION BEHAVIOR REVISITED

    No full text
    corecore