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Abstract

We develop a calculus of variations for functionals which are defined on a set of non-differen
curves. We first extend the classical differential calculus in a quantum calculus, which allows
define a complex operator, called the scale derivative, which is the non-differentiable analo
the classical derivative. We then define the notion of extremals for our functionals and ob
characterization in term of a generalized Euler–Lagrange equation. We finally prove that solut
the Schrödinger equation can be obtained as extremals of a non-differentiable variational pr
leading to an extended Hamilton’s principle of least action for quantum mechanics. We compa
approach with the scale relativity theory of Nottale, which assumes a fractal structure of spac
 2004 Elsevier Inc. All rights reserved.

Résumé

(Principes variationnels non différentiable). Nous développons un calcul des variations po
fonctionnelles définies sur un ensemble de courbes non différentiables. Pour cela, nous éte
calcul différentiel classique, en calcul appelécalcul quantique, qui nous permet de définir un opér
teur à valeur complexes, appelédérivée d’échelle, qui est l’analogue non différentiable de la dériv
usuelle. On définit alors la notion d’extremale pour ces fonctionnelles pour lesquelles nous ob
une caractérisation via une équation d’Euler–Lagrange généralisée. On prouve enfin que l
tions de l’équation de Schrödinger peuvent s’obtenir comme solution d’un problème variat
non différentiable, étendant ainsi le principe de moindre action de Hamilton au cadre de la
nique quantique. On discute enfin la connexion entre ce travail et la théorie de la relativité d’é
développée par Nottale, et qui suppose une structure fractale de l’espace–temps.
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1. Introduction

Lagrangian mechanics describes motion of mechanical systems using differe
manifolds. Motions of Lagrangian systems are extremals of a variational principle c
“Hamilton’s principle of least action” (see [1, p. 55]).

However, some important physical systems cannot be put in such a framewor
example, generic trajectories of quantum mechanics are not differentiable curves [12
that a classical Lagrangian formalism is not possible (see however [11]).

In this article we extend the calculus of variations in order to cover sets of
differentiable curves. We first define a quantum calculus allowing us to analyze
differentiable functions by means of a complex operator, which generalizes the cla
derivative. We then introduce functionals on Hölderian curves and study the analo
extremals for these objects. We prove that extremals curves of our functionals are so
of a generalized Euler–Lagrange equation, which looks like the one obtained by N
[17] in the context of the scale relativity theory. We then prove that the Schrödinger
tion can be obtain as extremals of a non-differentiable variational problem.

The non-differentiable calculus of variations gives a rigorous basis to the scale rel
principle developed by Nottale [17] in order to recover quantum mechanics by keepin
the differentiability assumption of the space–time.

2. Quantum calculus

In this section we define the quantum calculus, which extends the classical diffe
calculus to non-differentiable functions. We refer to [4] and [9] for analogous ideas an
underlying physical framework leading to this extension.

2.1. Basic definitions

We denote byC0 the set of continuous real valued functions defined onR.

Definition 2.1. Let f ∈ C0. For all ε > 0, we callε left and right quantum derivatives th
quantities

∆σ f (t) = σ
f (t + σε) − f (t)

, σ = ±. (1)
ε ε
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The ε left and right quantum derivatives of a continuous function correspond to
classical derivatives of the left and rightε-mean function defined by

f σ
ε (t) = σ

ε

t+σε∫
t

f (s) ds, σ = ±. (2)

Usingε left and right derivatives, we can define an operator which generalize the
sical derivative.

Definition 2.2. Let f ∈ C0. For all ε > 0, the ε scale derivative off at point t is the
quantity denoted by�εf/�t , and defined by

�εf�t
(t) = (

∆+
ε f (t) + ∆−

ε f (t)
) − i

(
∆+

ε f (t) − ∆−
ε f (t)

)
. (3)

If f is differentiable, we can take the limit of the scale derivative whenε goes to zero
We then obtain the classical derivative off , f ′.

In the following, we will frequently denote�εx for �εx/�t .
We also need to extend the scale derivative to complex valued functions.

Definition 2.3. Let f be a continuous complex valued function. For allε > 0, theε scale
derivative off , denoted by�εf/�t is defined by

�εf�t
(t) = �ε Re(f )

�t
+ i

�ε Im(f )

�t
, (4)

where Re(f ) and Im(f ) denote the real and imaginary parts off .

This extension of the scale derivative in order to cover complex valued functions
from being trivial. Indeed, it mixes complex terms in a complex operator.

2.2. Basic formulas

For all ε > 0 the scale derivative is not a derivation1 on the set of continuous function2

Indeed, we have:

Theorem 2.1.Letf andg be two functions ofC0. For all ε > 0 we have

�ε(fg) = �εf.g + f.�εg

+ εi[�εf �ε g − �εf �εg − �εf �εg − �εf �ε g], (5)

where�f is the complex conjugate of�f .

1 We recall that a derivation on an abstract algebraA is a linear applicationD :A → A such thatD(xy) =
D(x).y + x.D(y) for all x, y ∈ A.

2 A classical result says that there exists no derivations on the set of continuous functions except the triv

defined byD(f ) = 0 for all f ∈ C0.
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Of course, when we restrict our attention to differentiable functions, taking the lim
(5) whenε goes to zero, we obtain the classical Leibniz rule(fg)′ = f ′.g + f.g′.

Proof. Formula (5) follows from easy calculations. In particular, we use the fact that

∆ε
σ (fg) = ∆ε

σ f.g + f.∆ε
σ g + σε∆ε

σ f.∆ε
σ g, σ = ±, (6)

which is a standard result of the calculus of finite differences (see [14]).
As a consequence, we have

�ε(fg) = �εf.g + f.�εg

+ ε
[(

∆+
ε f ∆−

ε g − ∆−
ε f ∆−

ε g
) − i

(
∆+

ε f ∆−
ε g + ∆−

ε f ∆−
ε g

)]
. (7)

Moreover, we have the following formula:

�εf �εg = 1

2

[(
∆+

ε f ∆−
ε g + ∆−

ε f ∆+
ε g

) − i
(
∆+

ε f ∆+
ε g − ∆−

ε f ∆−
ε g

)]
, (8)

and

�εf �ε g = 1

2

[(
∆+

ε f ∆+
ε g + ∆−

ε f ∆−
ε g) − i

(
∆+

ε f ∆−
ε g − ∆−

ε f ∆+
ε g

)]
. (9)

We then obtain

∆+
ε f ∆+

ε g + ∆−
ε f ∆−

ε g = �εf �ε g + �εf �εg,

−i
(
∆+

ε f ∆+
ε g − ∆−

ε f ∆−
ε g

) = �εf �εg − �εf �ε g. (10)

We deduce then the following equality:(
∆+

ε f ∆−
ε g − ∆−

ε f ∆−
ε g

) − i
(
∆+

ε f ∆−
ε g + ∆−

ε f ∆−
ε g

)
= i(�εf �εg − �εf �ε g) − i(�εf �ε g + �εf �εg). (11)

This concludes the proof.�
We have the following integral formula:

b∫
a

�εf (t) dt = 1

2

[(
f +

ε (t) + f −
ε (t)

) − i
(
f +

ε (t) − f −
ε (t)

)]∣∣∣∣
b

a

. (12)

Whenε goes to zero, we deduce

lim
ε→0

b∫
a

�εf (t) dt = f (t)|ba. (13)

2.3. Hölderian functions

In the following, we consider a particular class of non-differentiable functions c

Hölderian functions[22].
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Definition 2.4. A continuous real valued functionf is Hölderian of Hölder exponentα,
0 < α < 1, if for all ε > 0, and allt, t ′ ∈ R such that|t − t ′| � ε, there exists a constantc

such that∣∣f (t) − f (t ′)
∣∣ � cεα. (14)

In the following, we denote byHα the set of continuous functions which are Hölder
of Hölder exponentα. Moreover, we say that a complex valued functiony(t) belongs to
Hα if its real and imaginary parts belong toHα .

We then have the following lemma.

Lemma 2.1.If x ∈ Hα then�εx ∈ Hα for all ε > 0.

This follows from the definition of�εx(t) and simple calculations.

2.4. A technical result

We derive a technical result about the scale derivative, which will be used in th
section.

Theorem 2.2.Let f (x, t) be aCn+1 function andx(t) ∈ H 1/n, n � 1. For all ε > 0 suffi-
ciently small, we have

�εf (x(t), t)

�t
= ∂f

∂t
+

n∑
j=1

1

j !
∂jf

∂xj

(
x(t), t

)
εj−1aε,j (t) + o(ε1/n), (15)

where

aε,j (t) = 1

2

[((
∆ε+x

)j − (−1)j
(
∆ε−x

)j ) − i
((

∆ε+x
)j + (−1)j

(
∆ε−x

)j )]
. (16)

The proof follows easily from the following lemma.

Lemma 2.2.Let f (x, t) be a real valued function of classCn+1, n � 1, andx(t) ∈ H 1/n.
For all ε > 0 sufficiently small, the right and left quantum derivatives off (x(t), t) are
given by

∆ε
σ f

(
x(t), t

) = ∂f

∂t

(
x(t), t

) + σ

n∑
i=1

1

i!
∂if

∂xi

(
x(t), t

)
ε−1(σε∆ε

σ x(t)
)i

+ o(ε1/n), (17)

for σ = ±.

Proof. This follows from easy computations. First, we remark that, asx(t) ∈ H 1/n, we
have|ε∆ε

σ X(t)| = o(ε1/n). Moreover,( ) ( )

f x(t + ε), t + ε = f x(t) + ε∆ε+x(t), t + ε .
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By the previous remark, and the fact thatf is of orderCn+1, we can make a Taylor expa
sion up to ordern with a controlled remainder,

f
(
x(t + ε), t + ε

) = f
(
x(t), t

) +
n∑

k=1

1

k!
∑

i+j=k

(
ε∆ε+x(t)

)i
εj ∂kf

∂ix∂j t

(
x(t), t

)

+ o
((

ε∆ε+x(t)
)n+1)

.

As a consequence, we have

ε∆ε+f
(
x(t), t

) =
n∑

k=1

1

k!
∑

i+j=k

(
ε∆ε+x(t)

)i
εj ∂kf

∂ix∂j t

(
x(t), t

) + o
((

ε∆ε+x(t)
)n+1)

.

By selecting terms of order less or equal to one inε in the right of this equation, we obta

ε∆ε+f
(
x(t), t

) = ε

[
∂f

∂t

(
x(t), t

) +
n∑

i=1

1

i!
∂if

∂xi

(
x(t), t

)
ε−1(ε∆ε+x(t)

)i

]

+ o
(
ε2∆ε+x(t)

)
.

Dividing by ε, we obtain the lemma. �

3. Non-differentiable calculus of variations

3.1. Functionals

The classical calculus of variations is concerned with the extremals of functions w
domain is an infinite-dimensional space: the space of curves, which is usually the
differentiablecurves. We look for an analogous theory on the set of non-different
curves.

In all the text,α is a real number satisfying

0< α < 1,

andε is a parameter, which is assumed to be sufficiently small, i.e.,

0< ε � 1,

without precising its exact smallness.
We denote byCα

ε (a, b) the set of curves in the plane of the form

γ = {(
t, x(t)

)
, x ∈ Hα, a − ε � t � b + ε

}
. (18)

Remark 3.1.(i) In the following, we will simply writeCα(a, b) for Cα
ε (a, b).

(ii) We must takea − ε � t � b + ε in order to avoid problems with the definition of th
scale derivative on the extremal points of the interval[a, b].
A functionalΦ is a mapΦ :Cα(a, b) → C.
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Remark 3.2. In classical mechanics, one usually consider real valued functionals in
of complex one.

We will restrict our attention to the following class of functionals.

Definition 3.1. Let L :R × C × R → C be a differentiable function of three variabl
(x, v, t). For allε > 0, a functionalΦε :Cα(a, b) → C is defined by

Φε(γ ) =
b∫

a

L
(
x(t),�εx(t), t

)
dt, (19)

for all γ ∈ Cα(a, b).

Of course, when we consider differentiable curves, we can take the limit of (19)
ε goes to zero, and we obtain the classical functional (see [1, p. 56]):

Φ(γ ) =
b∫

a

L
(
x(t), ẋ(t), t

)
dt, (20)

whereẋ = dx/dt .

3.2. Variations

We first definevariationsof curves.

Definition 3.2.Let γ ∈ Cα(a, b). A variationγ ′ of γ is a curve

γ ′ = {(
t, x(t) + h(t)

)
, x ∈ Hα, h ∈ Hβ, β � α1[1/2,1] + (1− α)1]0,1/2[,

h(a) = h(b) = 0
}
. (21)

We denote this curve byγ ′ = γ + h.

As in the usual case, we look for paths of a given regularity class with prescribe
points. The conditionβ � α1[1/2,1] + (1 − α)1]0,1/2[ for the variation is a technical as
sumption, which will be used in the derivation of the non-differentiable analogue o
Euler–Lagrange equation (see Section 3.3). The minimal condition onβ for which the
problem of variations makes sense isβ � α, in order to ensure thatγ + h is again in
Cα(a, b).

In the following, we always consider variations of a given curveγ of the formγµ =
γ + µh, whereµ is a real parameter.

Definition 3.3. A functional Φ is called differentiable onCα(a, b) if for all variations
h ∈ Cβ(a, b), we have
Φ(γ + h) − Φ(γ ) = F(γ,h) + R(γ,h), (22)
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whereF depends linearly onh, i.e., F(h1 + h2) = F(h1) + F(h2) andF(ch) = cF (h),
andR(γ,h) = O(h2), i.e., for |h| < µ and|�εh| < µ, we have|R| < Cµ2.

The functionalF is called the differential ofΦ.

In the case of functionals of the form (19), we have

Theorem 3.1.For all ε > 0, the functionalΦε(γ ) defined by(19) is differentiable, and its
derivative is given by the formula

Fγ
ε (h) =

b∫
a

[
∂L

∂x

(
x(t),

�εx�t
, t

)
− �ε�t

(
∂L

∂�εx

(
x(t),

�εx�t
, t

))]
h(t) dt (23)

+
b∫

a

�ε�t

(
∂L

∂�εx
h(t)

)
dt + iRγ

ε (h), (24)

with

Rγ
ε (h) = ε

b∫
a

[�εfε(t)�εh(t) − �εfε(t)�εh(t) − �εfε(t) �ε h(t)

− �εfε(t) �ε h(t)
]
dt, (25)

where

fε(t) = ∂L

∂�εx

(
x(t),�εx(t), t

)
. (26)

Proof. We have

Φε(γ + h) − Φ(γ )

=
b∫

a

[
L

(
x(t) + h(t),�εx(t) + �εh(t), t

) − L
(
x(t),�εx(t), t

)]
dt

=
b∫

a

[
∂L

∂x

(
x(t),�εx(t), t

)
h(t) + ∂L

∂�εx

(
x(t),�εx(t), t

)�εh(t)

]
dt + O(h2)

= Fγ
ε (h) + R(h),

where

Fγ
ε (h) =

b∫
a

[
∂L

∂x

(
x(t),�εx(t), t

)
h(t) + ∂L

∂�εx

(
x(t),�εx(t), t

)�εh(t)

]
dt,

andR(h) = O(h2).

Using (5), we deduce:
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Fγ
ε (h) =

b∫
a

[
∂L

∂x

(
x(t),

�εx�t
, t

)
− �ε�t

(
∂L

∂�εx

(
x(t),

�εx�t
, t

))]
h(t) dt

+
b∫

a

�ε�t

(
∂L

∂�εx
h(t)

)
dt

+ iε

b∫
a

[�εfε(t)�εh(t) − �εfε(t)�εh(t) − �εfε(t) �ε h(t)

− �εfε(t) �ε h(t)
]
dt,

with

fε(t) = ∂L

∂�εx

(
x(t),�εx(t), t

)
.

This concludes the proof.�
3.3. Extremal curves and Euler–Lagrange equation

The functional derivative ofΦε mix terms which are either divergent whenε goes to
zero, or tending toward 0 withε. In order to simplify our problem and to take into accou
only dominant terms inε, we introduce the following operator.

Definition 3.4. Let ap(ε) be a real or complex valued function, with parametersp. We
denote by[.]ε the linear operator defined by

(i) ap(ε) − [ap(ε)]ε →ε→0 0,
(ii) [ap(ε)]ε = 0 if lim ε→0 ap(ε) = 0.

The quantity[ap(ε)]ε is called theε-dominant part ofap(ε).

For example, ifa(ε) = ε−1/2 + 2ε + 2, then[a(ε)]ε = ε−1/2 + 2.
We deduce the following properties.

Lemma 3.1.Theε-dominant part is unique.

Proof. This comes from the relation[[.]ε]ε = [.]ε . Indeed, by definition we haveap(ε) =
[ap(ε)]ε + r(ε) with limε→0 r(ε) = 0. Applying [.]ε directly on this expression, we obta
[ap(ε)]ε = [[ap(ε)]ε]ε using (ii). �
Remark 3.3.Unicity comes from condition (ii). Indeed, if we cancel this condition, we
obtain many different quantities satisfying (i). For example, ifa(ε) = αε−1/2 + ε + 2, then
without (ii), we have the choice between[a(ε)]ε = ε−1/2 + 2+ ε and[a(ε)]ε = ε−1/2 + 2.

(ii) This operator can be used in the definition of left and right quantum operato

consideringδσ

ε x(t) = [∆σ
ε x(t)]ε , σ = ±. However, using such kind of operators lead to
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many difficulties from the algebraic point of view, in particular with the derivation of
analogue of the Leibniz rule.

We now introduce the non-differentiable analogue of the notion ofextremalscurves in
the classical case (see [1, p. 57]).

Definition 3.5. Let 0< α � 1. An extremal curve of the functional (19) on the space
curves of classCβ(a, b), β � α1[1/2,1] + (1−α)1]0,1/2[, is a curveγ ∈ Cα(a, b) satisfying[

Fγ
ε (h)

]
ε
= 0, (27)

for all ε > 0 and allh ∈ Cβ(a, b).

The following theorem gives the analogue of the Euler–Lagrange equations fo
tremals of our functionals.

Theorem 3.2.We assume that the functionL defining the functional(19)satisfies∥∥D(∂L/∂v)
∥∥ � C, (28)

whereC is a constant,D denotes the differential, and‖.‖ is the classical norm on matrice
The curveγ : x = x(t) is an extremal curve of the functional(19)on the space of curves o
classCβ(a, d),

β � α1[1/2,1] + (1− α)1]0,1/2[, (29)

if and only if it satisfies the following generalized Euler–Lagrange equation:[
∂L

∂x

(
x(t),

�εx�t
, t

)
− �ε�t

(
∂L

∂�εx

(
x(t),

�εx�t
, t

))]
ε

= 0, (30)

for ε > 0.

Remark 3.4. Our Euler–Lagrange equation (30) looks like the one obtained by No
[17] in the context of thescale relativity theory(see Section 5.2).

Proof. The proof follow the classical derivation of Euler–Lagrange equation (see, fo
ample, [21, pp. 432–434]). By Theorem 3.1, we have

Fγ
ε (h) =

b∫
a

[
∂L

∂x

(
x(t),

�εx�t
, t

)
− �ε�t

(
∂L

∂�εx

(
x(t),

�εx�t
, t

))]
h(t) dt

+
b∫

a

�ε�t

(
∂L

∂�εx
h(t)

)
dt

+ iε

b∫
a

[�εfε(t)�εh(t) − �εfε(t)�εh(t) − �εfε(t) �ε h(t)

]
− �εfε(t) �ε h(t) dt,
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with

fε(t) = ∂L

∂�εx

(
x(t),�εx(t), t

)
.

In order to conclude, we need the following lemma.

Lemma 3.2.Let0< ε, a, b ∈ R, h ∈ Hβ , β � α1[1/2,1] + (1−α)1]0,1/2[, such thath(a) =
h(b) = 0, andfε :R → C such that

sup
s∈{t,t+σε}

∣∣fε(s)
∣∣ � Cεα−1, (31)

for all t ∈ [a, b]. Then, we have

b∫
a

�ε�t

(
fε(t)h(t)

)
dt = O(εα+β−1) (32)

and

ε

b∫
a

Opε(fε)Op′
ε(h) dt = O(εα+β),

whereOpε andOp′
ε are either�ε or �ε .

The proof is given in the next section.
Using condition (28), we obtain

sup
s∈{t,t+σε}

|∂L/∂�εx| � C′εα−1,

as sups∈{t,t+σε} [max(|x(s)|, |�εx(s)|, |s|)] � C′′εα−1.
Using Lemma 3.2 withfε(s) = (∂L/∂�ε t)(x(s),�ε(s), s), and condition (29), we de

duce that

lim
ε→0

b∫
a

�ε�t

(
∂L

∂�εx
h(t)

)
dt = 0

and

lim
ε→0

ε

b∫
a

Opε

(
∂L

∂�εx

)
Op′

ε

(
h(t)

)
dt = 0,

for Opε andOp′
ε which are either�ε or �ε .

Hence, applying the operator[.]ε , we obtain

[
Fγ

ε (h)
]
ε
=

[ b∫ [
∂L

(
x(t),

�εx
, t

)
− �ε

(
∂L

(
x(t),

�εx
, t

))]
h(t) dt

]

a

∂x �t �t ∂�εx �t
ε
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nts:

only
=
b∫

a

[
∂L

∂x

(
x(t),

�εx�t
, t

)
− �ε�t

(
∂L

∂�εx

(
x(t),

�εx�t
, t

))]
ε

h(t) dt.

The rest of the proof follows as in the classical case (see [1, pp. 57–58]).�
Remark 3.5.The special form of condition (29) comes from the two following constrai
one must haveβ � α in order to preserve the regularity of perturbed curvesγ + h, and
β � 1− α in order to ensure that the first quantity of Eq. (32) goes to zero whenε goes to
zero. Note thatα = 1/2 plays a special role for these sets of conditions, as this is the
one for which the regularity of curves and variations are equal.

4. Proof of Lemma 3.2

This comes essentially from the integral formula (12). Indeed,

b∫
a

�ε�t

(
fε(t)h(t)

)
dt

is a combination of the following quantities:

1

2ε

t+σε∫
t

fε(s)h(s) ds, σ = ±,

for t = a or t = b.
As h(a) = h(b) = 0 andh ∈ Cβ(a, b), we have fort = a or t = b,

sup
s∈{t,t+σε}

∣∣h(s)
∣∣ = sup

s∈{t,t+σε}
∣∣h(s) − h(t)

∣∣ � Cεβ,

for some constantC. Moreover, using condition (31), we easily obtain

sup
s∈{t,t+σε}

∣∣fε(s)h(s)
∣∣C′εα+β−1,

whereC′ is a constant. Using this inequality, we deduce∣∣∣∣∣
b∫

a

�ε�t

(
fε(s)h(s)

)
ds

∣∣∣∣∣ = O(εα+β−1).

We only prove the second inequality of Eq. (32) forOpε = �ε andOp′
ε = �ε . The re-

maining cases are proved in the same way.
As h ∈ Cβ(a, b), we have

sup
t∈[a,b]

∣∣�εh(t)
∣∣ � Cεβ,

for some constantC (see Lemma 2.1). Moreover, using (31), we obtain∣∣ σ
∣∣ σ α−1
sup

s∈[a,b]
∆ε (fε)(s) � C ε ,
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an
text of
for some constantCσ , σ = ±. We deduce

sup
s∈[a,b]

∣∣�εfε(s)
∣∣ � C′εα−1.

As a consequence, we obtain the inequality∣∣∣∣∣ε
b∫

a

�εfε�t

�εh�t
dt

∣∣∣∣∣ � C′′εα+β,

for some constantC′′. This concludes the proof of Lemma 3.2.

5. Application: least action principle and non-linear Schrödinger equations

5.1. Least action principle and the Schrödinger equation

In this section we gives a variational principle whose extremals are solutions o
Schrödinger equation.

We consider the following non-linear Schrödinger’s equation (obtained in [4,9]):[
2iγm

[
− 1

ψ

(
∂ψ

∂x

)2(
iγ + aε(t)

2

)
+ ∂ψ

∂t
+ aε(t)

2

∂2ψ

∂x2

]

= (
U(x) + α(x)

)
ψ

]
ε

, (33)

wherem > 0, γ ∈ R, U :R → R, aε :R → C, α(x) is an arbitrary continuous function.
The main result of this section is an analogue of theHamilton’s principle of least action

(see [1, p. 59]) for (33).

Theorem 5.1.Solutions of the non-linear Schrödinger equation(33) coincide with ex-
tremals of the functional associated to

L
(
x(t),�εx(t), t

) = (1/2)m
(�εx(t)

)2 + U(x), (34)

on the space ofC1/2 curves, wherex(t) andψε(x, t) are related by

�εx�t
= −i2γ

∂ ln(ψ(x, t))

∂x
, (35)

and ifaε(t) is such that

aε(t) = 1

2

[(
∆+

ε x(t)
)2 − (

∆−
ε x(t)

)2] − i
1

2

[(
∆+

ε x(t)
)2 + (

∆−
ε x(t)

)2]
. (36)

Remark 5.1. (i) The non-linear Schrödinger equation (33) was derived in [4] using
analogue of the Euler–Lagrange equation (30) proposed by Nottale [17] in the con
the Scale relativity theory. This derivation was done in the framework of thelocal fractional

calculusdeveloped in [3] and under an assumption concerning the existence of solutions to
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4.3],

es a
of [4].
which
uler–

fy the
a particular fractional differential equation. However, as proved in ([9, part I, Section
[5]) such assumptions cannot be satisfied.

(ii) In [9], Eq. (33) was derived using a “scale quantization procedure,” which giv
way to pass from classical mechanics to quantum mechanics, avoiding the problems
However, the Euler–Lagrange equation used in [9] comes from scale quantization,
is an abstract and formal way to derive the analogue of (30) from the classical E
Lagrange equation (see Section 5.2).

Proof. As ∂L/∂�εx = m�εx, its differential is given by

D(∂L/∂�εx) = (0,m,0),

so that condition (28) is satisfied. By Theorem 3.2, extremals of our functional satis
Euler–Lagrange equation[

m
�ε�εx(t)

�t
= dU

dx
(x)

]
ε

. (37)

We denote

f (x, t) = ∂ ln(ψ(x, t))

∂x
(x, t).

We apply Theorem 2.2 withn = 2, in order to compute�εf (x(t), t)/�t . We have

�ε�t

(
∂ ln(ψ)

∂x

(
x(t), t

)) = �εx�t

∂

∂x

(
∂ ln(ψ(x, t))

∂x

)(
x(t), t

)
+ ∂

∂t

(
∂ ln(ψ(x, t))

∂x

)(
x(t), t

)

+ 1

2
aε(t)

∂2

∂x2

(
∂ ln(ψ(x, t))

∂x

)(
x(t), t

) + o(ε1/2). (38)

Elementary calculus gives

∂ ln(ψ(x, t))

∂x
= 1

ψ

∂ψ

∂x

and

∂

∂x

(
1

ψ

∂ψ

∂x

)
= 1

ψ

∂2ψ

∂2x
− 1

ψ2

(
∂ψ

∂x

)2

.

Hence, we obtain

�εx�t

∂

∂x

(
∂ ln(ψ(x, t))

∂x

)(
x(t), t

) = −i2γ
∂ ln(ψ)

∂x

∂

∂x

(
∂ ln(ψ)

∂x

)(
x(t), t

)

= −iγ
∂

∂x

[(
∂ ln(ψ)

∂x

)2 ](
x(t), t

)
∂

[
1

(
∂ψ

)2 ]( )
= −iγ
∂x ψ2 ∂x

x(t), t .
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linear
these
s in or-
9,20]).
linear

ze the
We then have

�ε�t

(
∂ ln(ψ(x, t))

∂x

(
x(t), t

))

= ∂

∂x

[
−iγ

1

ψ2

(
∂ψ

∂x

)2

+ ∂ ln(ψ)

∂t
+ 1

2
aε(t)

[
1

ψ

∂2ψ

∂x2
− 1

ψ2

(
∂ψ

∂x

)2 ]]
+ o(ε1/2)

= ∂

∂x

[
− 1

ψ2

(
∂ψ

∂x

)2(
iγ + aε(t)

2

)
+ 1

ψ

∂ψ

∂t
+ aε(t)

2

1

ψ

∂2ψ

∂x2

]
+ o(ε1/2).

As a consequence, Eq. (38) is equivalent to

∂

∂x

[
i2γm

[
− 1

ψ2

(
∂ψ

∂x

)2(
iγ + aε(t)

2

)
+ 1

ψ

∂ψ

∂t

]
+ aε(t)

2

1

ψ

∂2ψ

∂x2

]
= ∂U

∂x
.

By integrating with respect tox, we obtain

i2γm

[
− 1

ψ2

(
∂ψ

∂x

)2(
iγ + aε(t)

2

)
+ 1

ψ

∂ψ

∂t

]
+ aε(t)

2

1

ψ

∂2ψ

∂x2

= U(x) + α(x) + o(ε1/2),

whereα(x) is an arbitrary function. This concludes the proof.�
A great deal of efforts have been made in order to generalize the classical

Schrödinger equation (see, for example, de Broglie [6,7] and Lochak [13]). However,
generalizations are in general ad hoc one, choosing some particular non-linear term
der to solve some specific problems of quantum mechanics (see, for example, [2,1
On the contrary, the non-differentiable least action principle impose a fixed non-
term.

In order to recover the classical linear Schrödinger equation, we must speciali
functional space on which we work. Precisely, we have

Theorem 5.2.Solutions of the Schrödinger equation[
ih̄

∂ψ

∂t
+ h̄2

2m

∂2ψ

∂x2
= U(x)ψ

]
ε

, (39)

whereh̄ = h/2π , coincide with extremals of the functional associated to

L
(
x(t),�εx(t), t

) = (1/2)m
(�εx(t)

)2 + U(x), (40)

on the space ofC1/2 curvesγ : x = x(t) satisfying

1

2

[(
∆+

ε x(t)
)2 − (

∆−
ε x(t)

)2] − i
1

2

[(
∆+

ε x(t)
)2 + (

∆−
ε x(t)

)2] = −ih̄/m, (41)

wherex(t) andψε(x, t) are related by

�εx = −i
h̄ ∂ ln(ψ(x, t))

. (42)
�t m ∂x
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Proof. This follows easily from the calculations made in the proof of Theorem 5.1.

For different derivations of the Schrödinger equation, we refer to the work of Nelso
stochastic mechanics[15,16] and Feynman [11], where he developed a principle of l
action, different from the one presented here.

5.2. About the scale relativity theory

This final section is informal and discuss the connexion between our non-differen
variational principle and the scale relativity theory. In the following, we do not giv
precise definition to the wordfractal. The only property which is assumed is that fract
are scale dependent objects. We refer to [10] for more details.

The scale relativity theorydeveloped by Nottale [17], gives up the assumption of
differentiability of space–time by considering what he calls afractal space–time, and ex-
tending the Einstein’s principle of relativity to scales.

One of the consequences of such a theory is that there exists an infinity of geod3

and that geodesics are fractal curves. On such curves, one must develop a new diff
calculus taking into account the non-differentiable character of the curve [8]. The
derivative introduced by Nottale is the analogue of the scale derivative introduced
paper.

Thescale relativity principlecan be state as follows:The equations of physics keep t
same form under scale transformations(see [17]).

As a consequence, the scale relativity principle allows us to pass from classical m
ics to quantum mechanic via a simple procedure:one must change the classical derivat
in Newton’s fundamental equation of dynamics by the scale derivative(see [18]).

As Newton’s equation is written via an Euler–Lagrange equation of the form

d

dt

[
∂L

∂v

]
= ∂L

∂x
, (43)

this procedure, calledscale quantizationin [9], gives a quantum analogue of the form

�ε�t

[
∂L

∂v

]
= ∂L

∂x
, (44)

wherev is of course a complex quantity defined by

v = �εx�t
. (45)

As a consequence, scale quantization gives an Euler–Lagrange equation similar
one obtained via the non-differentiable variational principle introduced in this paper
non-differentiable variational principle can be considered as an attempt to develo
mathematical foundations of the scale relativity principle.
3 This notion is not well defined, and we refer to [17] for more details.
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