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Abstract

We develop a calculus of variations for functionals which are defined on a set of non-differentiable
curves. We first extend the classical differential calculus in a quantum calculus, which allows us to
define a complex operator, called the scale derivative, which is the non-differentiable analogue of
the classical derivative. We then define the notion of extremals for our functionals and obtain a
characterization in term of a generalized Euler-Lagrange equation. We finally prove that solutions of
the Schrodinger equation can be obtained as extremals of a non-differentiable variational principle,
leading to an extended Hamilton’s principle of least action for guantum mechanics. We compare this
approach with the scale relativity theory of Nottale, which assumes a fractal structure of space—time.
0 2004 Elsevier Inc. All rights reserved.

Résumé

(Principes variationnels non différentiable). Nous développons un calcul des variations pour des
fonctionnelles définies sur un ensemble de courbes non différentiables. Pour cela, nous étendons le
calcul différentiel classique, en calcul appeddcul quantiquequi nous permet de définir un opéra-
teur a valeur complexes, appelérivée d’échellequi est I'analogue non différentiable de la dérivée
usuelle. On définit alors la notion d’extremale pour ces fonctionnelles pour lesquelles nous obtenons
une caractérisation via une équation d’Euler—Lagrange généralisée. On prouve enfin que les solu-
tions de I'équation de Schrodinger peuvent s’obtenir comme solution d’'un probléme variationnel
non différentiable, étendant ainsi le principe de moindre action de Hamilton au cadre de la méca-
nique quantique. On discute enfin la connexion entre ce travail et la théorie de la relativité d’échelle
développée par Nottale, et qui suppose une structure fractale de I'espace—temps.
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1. Introduction

Lagrangian mechanics describes motion of mechanical systems using differentiable
manifolds. Motions of Lagrangian systems are extremals of a variational principle called
“Hamilton’s principle of least action” (see [1, p. 55]).

However, some important physical systems cannot be put in such a framework. For
example, generic trajectories of guantum mechanics are not differentiable curves [12], such
that a classical Lagrangian formalism is not possible (see however [11]).

In this article we extend the calculus of variations in order to cover sets of non-
differentiable curves. We first define a quantum calculus allowing us to analyze non-
differentiable functions by means of a complex operator, which generalizes the classical
derivative. We then introduce functionals on Hélderian curves and study the analogue of
extremals for these objects. We prove that extremals curves of our functionals are solutions
of a generalized Euler—Lagrange equation, which looks like the one obtained by Nottale
[17] in the context of the scale relativity theory. We then prove that the Schrédinger equa-
tion can be obtain as extremals of a non-differentiable variational problem.

The non-differentiable calculus of variations gives a rigorous basis to the scale relativity
principle developed by Nottale [17] in order to recover quantum mechanics by keeping out
the differentiability assumption of the space—time.

2. Quantum calculus

In this section we define the quantum calculus, which extends the classical differential
calculus to non-differentiable functions. We refer to [4] and [9] for analogous ideas and the
underlying physical framework leading to this extension.

2.1. Basic definitions
We denote byC? the set of continuous real valued functions definedon

Definition 2.1. Let f € C°. For alle > 0, we calle left and right quantum derivatives the
guantities

A f(1) =

Uw’ -+, (1)
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The € left and right quantum derivatives of a continuous function correspond to the
classical derivatives of the left and rigdimean function defined by

t+oe

=2 / F)ds. o=-=. @
t

Usinge left and right derivatives, we can define an operator which generalize the clas-
sical derivative.

Definition 2.2. Let f € C°. For all € > 0, thee scale derivative off at point is the
guantity denoted by, f/0¢, and defined by

a _ . -
D%f(t) =(AffO+AZf0) —i(AL () = AZ FD). (3)

If f is differentiable, we can take the limit of the scale derivative whegoes to zero.
We then obtain the classical derivative ff 1.

In the following, we will frequently denotei.x for O.x /0.

We also need to extend the scale derivative to complex valued functions.

Definition 2.3. Let f be a continuous complex valued function. Foreat 0, thee scale
derivative of f, denoted bya, f/0r is defined by
R Im
O/ ) _ DeRef) | O imf)
at at m;

where Ré f) and Im( /) denote the real and imaginary partsjaf

(4)

This extension of the scale derivative in order to cover complex valued functions is far
from being trivial. Indeed, it mixes complex terms in a complex operator.

2.2. Basic formulas

For alle > 0 the scale derivative is not a derivatioon the set of continuous functiohs
Indeed, we have:

Theorem 2.1.Let f andg be two functions of°. For all ¢ > 0 we have

Oc(fg) =0c f.g+ f.Oeg
+ei[0c f Be g —Be fOcg — Oc fOeg — Be f Be g, )

whereBf is the complex conjugate of f.

1 We recall that a derivation on an abstract algebris a linear applicatiorD: A — A such thatD(xy) =
D(x).y +x.D(y) forall x, y € A.

2 A classical result says that there exists no derivations on the set of continuous functions except the trivial one,
defined byD(f) =0 for all f e C.
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Of course, when we restrict our attention to differentiable functions, taking the limit of

(5) whene goes to zero, we obtain the classical Leibniz iufg)’ = f'.g + f.g’.

Proof. Formula (5) follows from easy calculations. In particular, we use the fact that

AS(fe)=AS f.g+ [ ASg+oeAS f.AS g, o=,

which is a standard result of the calculus of finite differences (see [14]).
As a consequence, we have

Oc(fg) =0cf.g + fOeg

re[(affazg—AZFAZg) —i(AF FAZg+ A FAZg)].

Moreover, we have the following formula:

1
O = 3[(AF FAT g+ A7 FATR) — (AT FATe — A7 A8,

and

1
DcfBeg=3[(Alfalg+A A9 —i(ALfA g — A fALg)].

We then obtain

AL fAlg+ A7 fAZg=0ecf Be g +Bc fOeg,
—i(AY fASg— A fAZg) =DcfDeg —BefBeg.
We deduce then the following equality:
(Al fACe— A fACg) —i(AlfACE+ALfACR)
=i(OcfOeg —Be fBe ) —i(Oc f Be g +Be fOcg).
This concludes the proof.O

We have the following integral formula:
b b

1
f Oc f(t)dt = 5[(fj(t) + o) —i(fFo - fm0)]] -

a
a

Whene goes to zero, we deduce
b

|im0/|]€f(t)dt:f(t)|2.

a

2.3. Holderian functions

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

In the following, we consider a particular class of non-differentiable functions called

Holderian functiong§22].
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Definition 2.4. A continuous real valued functiofi is Hoélderian of Hélder exponert,
O<a <1, ifforall e >0, and allz, 7’ € R such thatr — ¢'| < ¢, there exists a constaat
such that

|f(6) = Ft)] < ce”. (14)

In the following, we denote by/“ the set of continuous functions which are Holderian
of Holder exponent:. Moreover, we say that a complex valued functigm) belongs to
H¢ ifits real and imaginary parts belong B&*.

We then have the following lemma.

Lemma 2.1.1f x € H* thenO.x € H* for all ¢ > 0.
This follows from the definition oficx () and simple calculations.

2.4. Atechnical result

We derive a technical result about the scale derivative, which will be used in the last
section.

Theorem 2.2.Let f(x, t) be aCc™*1 function andx(r) € HY”, n > 1. For all € > 0 suffi-
ciently small, we have

J
Oe f(;(t) 1) af Z 1’2 f x(l‘) t)Ej 1a€](t)+0(€1/n) (15)
where
ac; () = Z[((A5x)" = (=D’ (4a%x)") —i((a%x) + (=D’ (4a%x)")]. (16)

2

The proof follows easily from the following lemma.

Lemma 2.2.Let f(x, r) be a real valued function of clagd"*1, n > 1, andx(r) € HY/".
For all € > 0 sufficiently small, the right and left quantum derivativesfaok (¢), ¢) are
given by

3 "\ 19 i
As f(x@),1) = a‘—];(x(t), +o> = ax{ (x(0),1)e H(oeAsx (D)
i=1 "

+ o(eY™), (17)
foro =+.
Proof. This follows from easy computations. First, we remark thaty@s € H/", we
have|e AS X (1)| = o(e%/™). Moreover,

fx@+e),t+e) = f(x(t) +eASx(0), 1 +€).



J. Cresson / J. Math. Anal. Appl. 307 (2005) 48-64 53

By the previous remark, and the fact thats of orderC”*+1, we can make a Taylor expan-
sion up to order with a controlled remainder,

f
=7 (x(@),1)

fxt+e),t+e) = f(x(0),1 +Z > (eASx(t)) e

k=1"""i+j=k
+ 0((6Ai_x(t))n+l).

As a consequence, we have

€A f(x(0), 1) Z 3 (easxm) af]t(x(t) 1) +o((ealx )" ).

=1 i+j=k

By selecting terms of order less or equal to one in the right of this equation, we obtain

eAi_f(x(t),t): |: x(t) t —}—Z Vot x(t) t 1(5Aj_x(t)):|

+o(eAx(1)).

Dividing by ¢, we obtain the lemma. O

3. Non-differentiable calculus of variations
3.1. Functionals

The classical calculus of variations is concerned with the extremals of functions whose
domain is an infinite-dimensional space: the space of curves, which is usually the set of
differentiablecurves. We look for an analogous theory on the set of non-differentiable
curves.

In all the text,« is a real number satisfying

O<a<l,
ande is a parameter, which is assumed to be sufficiently small, i.e.,
O<exkl,

without precising its exact smallness.
We denote byC¢ (a, b) the set of curves in the plane of the form

y:{(t,x(t)),er“,a—egtéb—l—e}. (18)
Remark 3.1.(i) In the following, we will simply writeC® (a, b) for C¥ (a, b).
(i) We must take: — e <t < b+ € in order to avoid problems with the definition of the
scale derivative on the extremal points of the intefuab].

A functional® is a map® : C*(a, b) — C.
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Remark 3.2.1n classical mechanics, one usually consider real valued functionals instead
of complex one.

We will restrict our attention to the following class of functionals.

Definition 3.1. Let L:R x C x R — C be a differentiable function of three variables
(x,v,t). Foralle > 0, a functionakb. : C*(a, b) — C is defined by

b

D (y) :/L(x(t), Oex(1), 1) dt, (19)

a

forall y € C%(a, b).

Of course, when we consider differentiable curves, we can take the limit of (19) when
€ goes to zero, and we obtain the classical functional (see [1, p. 56]):

b

D(y) =/L(x(t),fc(t), 1) dt, (20)

a

wherex = dx/dt.
3.2. Variations
We first definevariationsof curves.

Definition 3.2.Let y € C%(a, b). A variationy’ of y is a curve

V/ = {(t, x(1) +h(l)), xe HY he Hﬁ, B = 011[1/2,1] + (1—(1)1]0,1/2[,
h(a) = h(b) =0}. (21)
We denote this curve by’ =y + h.

As in the usual case, we look for paths of a given regularity class with prescribed end
points. The conditior > alj1/2.1) + (1 — a)1j0,1/2 for the variation is a technical as-
sumption, which will be used in the derivation of the non-differentiable analogue of the
Euler—Lagrange equation (see Section 3.3). The minimal conditiof tor which the
problem of variations makes sensefis> «, in order to ensure thagt + & is again in
C%a, b).

In the following, we always consider variations of a given cupvef the formy, =
y + uh, wherep is a real parameter.

Definition 3.3. A functional @ is called differentiable orC%(a, b) if for all variations
h e CP(a,b), we have

Dy +h)—@(y)=F(y,h)+R(y,h), (22)
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where F' depends linearly on, i.e., F(h1 + h2) = F(h1) + F(h2) and F(ch) = cF (h),
andR(y,h) = O(h?), i.e., for|h| < n and|Och| < pu, we havelR| < C 2.

The functionalF is called the differential of.

In the case of functionals of the form (19), we have

Theorem 3.1.For all € > 0, the functionakp, (y) defined by19)is differentiable, and its
derivative is given by the formula

b
oL ; o L ;
FY (h) =/|:a(x(t), %,t) - %(am - (x(t), %,t))}h(t)dt 23)

b
O/ oL )
+/E<8D€xh(t))dt+zRZ(h), (24)
with
b
RZ(h) =€ /[Defé(t)meh(t) - E'efe(t)‘jeh(t) - Defe([) Ele h(t)
— B fe (1) Be h(1)] dt, (25)
where
L
e =5~ (x(®), Oex (@), 7). (26)

Proof. We have

Pe(y +h) —2(y)
b
= /[L(x(t) + (1), Oex(t) + Oeh(t), 1) — L(x (1), Qex (1), 1) ] dt

a
b

=/|:8—L(x(t),ljex(t),l)h(t)+ L (x(t),\]Ex(t),t)ljgh(t)]dt—i-O(hz)

0x 00X

a

=FY(h) + R(h),

where
b

aL oL
Fg’(h):/[a(x(t),\jgx(t),t)h(t)—i- =

€

(x(), Oex (1), I)Dgh(t):| dt,

a

andR(h) = O (h?).
Using (5), we deduce:
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b
8L € € aL €
FZ () :_/[a_x(x(t)’ %,z) - %(am x (x(t), %,t))}h(l)dl

b

Oe oL

— h(t) )dt
+/DI<BD5x ())

a

b

+ie /[Defe(f)Deh(f) —Be fe()Deh(1) — De fe(t) Be h(1)

—Be fe (1) Be h(t)] drt,

with
L
fe®) = 30 (x(®), Oex (), 7).

This concludes the proof.O

3.3. Extremal curves and Euler—Lagrange equation

The functional derivative of, mix terms which are either divergent whergoes to
zero, or tending toward O with. In order to simplify our problem and to take into account
only dominant terms i, we introduce the following operator.

Definition 3.4. Let a,(¢) be a real or complex valued function, with parameteravVe
denote by[.]¢ the linear operator defined by

0} ap(e) —lap(€)]le »e—0 0,
(i) [ap(e)]e =01iflimc_ga,(e) =0.

The quantity{a, (¢)]. is called thes-dominant part of, (¢).

For example, ifi(¢) = € Y2 + 2¢ + 2, then[a(e)]c = e Y2 4+ 2,
We deduce the following properties.

Lemma 3.1.Thee-dominant part is unique.

Proof. This comes from the relatiofi.]c]e = [.]e. Indeed, by definition we have, (¢) =
[ap(€)]e +r(e) with lim_,or(e) = 0. Applying[.]e directly on this expression, we obtain
lap(€)]e =[lap(€)]ele using (ii). O

Remark 3.3.Unicity comes from condition (ii). Indeed, if we cancel this condition, we can
obtain many different quantities satisfying (i). For example,#) = «e /24 ¢ + 2, then
without (i), we have the choice betwegn(e)]. = e 2+ 2+ ¢ and[a(e)]c = ¢ /24 2.

(ii) This operator can be used in the definition of left and right quantum operators by
considerings? x(t) = [AZx(1)]e, o = . However, using such kind of operators lead to
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many difficulties from the algebraic point of view, in particular with the derivation of the
analogue of the Leibniz rule.

We now introduce the non-differentiable analogue of the notioextemalscurves in
the classical case (see [1, p. 57]).

Definition 3.5. Let 0 < o < 1. An extremal curve of the functional (19) on the space of
curves of clas€? (a, b), B > alj1/2.1) + (1 —a)1j0,1/2(, is @ curvey € C%(a, b) satisfying

[F? (h)], =0, (27)
foralle > 0and allh € CP(a, b).

The following theorem gives the analogue of the Euler—Lagrange equations for ex-

tremals of our functionals.
Theorem 3.2.We assume that the functidndefining the functiong]19) satisfies

ID@GL/V)| <C, (28)

whereC is a constantD denotes the differential, and]| is the classical norm on matrices.
The curvey: x = x(¢) is an extremal curve of the function@9) on the space of curves of
classC?(a, d),

B =aliypa+ A —a)lpo2. (29)
if and only if it satisfies the following generalized Euler-Lagrange equation
oL oL
0x ar Or \ 00ex ar ¢
fore > 0.

Remark 3.4. Our Euler—Lagrange equation (30) looks like the one obtained by Nottale
[17] in the context of thescale relativity theorysee Section 5.2).

Proof. The proof follow the classical derivation of Euler—Lagrange equation (see, for ex-
ample, [21, pp. 432—-434]). By Theorem 3.1, we have

b
L . ./ oL .
F (h) :/[g(m), =, r) - %(85 - (m), DD;‘,tmh(z)dt
. oL
Oe
+/E<8D6xh(t)> dt

a

b

i / [Oc £ (D8eh (D) — Be fo)Beh(t) — Oe £ (1) Be h)

— Be fe (1) Be h(n)] dt,
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with
oL
00X
In order to conclude, we need the following lemma.

fe() = (x(), Qex (1), 1).

Lemma3.2.LetO<e€,a,beR,h e Hﬂ, B =alppa+ A —a)loz. such thati(a) =
h(b) =0, and f¢ : R — C such that

sup |fe(s)| < Ce* ™t (31)

se{t,t+o€}
for all r € [a, b]. Then, we have
b
/ %(fe(nh(r))dr = 0(e*F (32)
and
b
¢ / Ope(f)Op.(h)dt = O(**P),

whereOp. and Op_. are eitherc, or Be.
The proof is given in the next section.
Using condition (28), we obtain

sup |9L/90cx| < C'e* L,
se{t,t+o€}

as SUPc¢(s,r+oe¢) [max(|x ()], [Tex ()], [sD] < C’e* 1,
Using Lemma 3.2 withfe (s) = (3L /90¢1)(x(s), Oe(s), ), and condition (29), we de-
duce that

b
. oL
lim /E( h(t)>dt=0
e—0) Ot \ 00x

a

and

b
oL
lim 0 Oop.(h(t))dt =0,
ELOG/ pe(amex) pe(h()
a

for Op. and Op which are either. or 5.
Hence, applying the operatfi., we obtain

b
aL € € aL €
[FY ()], = [/[a<x(z), %, r) — %(85 - (x(t), %, t>>:|h(t)dt:|

€
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/ oL oL
O O O
=/ e L x(1), =2 ¢ h(r)dt.
ox ot 0Or \ 00ex ot ¢
a

The rest of the proof follows as in the classical case (see [1, pp. 57-58)).

Remark 3.5.The special form of condition (29) comes from the two following constraints:
one must haved > « in order to preserve the regularity of perturbed curves i, and

B > 11—« in order to ensure that the first quantity of Eq. (32) goes to zero wigges to
zero. Note thatr = 1/2 plays a special role for these sets of conditions, as this is the only
one for which the regularity of curves and variations are equal.

4. Proof of Lemma 3.2

This comes essentially from the integral formula (12). Indeed,
b
Oe
— Hh(t))dt
/ o (feh®)
a
is a combination of the following quantities:
1 t+oe
— / fe()h(s)ds, o==,
2¢
t
fort=aort=a.
As h(a) = h(b) =0 andh € CP(a, b), we have for =a ort = b,
sup |a(s)| = sup |i(s) —h(n)| < CeP,
se{t,t+o€} se{t,t+o¢€}
for some constant. Moreover, using condition (31), we easily obtain
SUp | fe(s)h(s)|Ce* TP,
se{t,t+o€}
whereC’ is a constant. Using this inequality, we deduce
b
Oe
— h(s))d
/ =, (fe®h()ds

a

— O(EQ—HS_:L).

We only prove the second inequality of Eq. (32) @p. = O and Op. = Oc. The re-
maining cases are proved in the same way.
As h e CP(a,b), we have
sup |Teh(n)] < CeP,
tela,b]
for some constant (see Lemma 2.1). Moreover, using (31), we obtain

sup A% (fo(s)] < Coe* 1,
s€la,b]
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for some constanf?, o = +. We deduce

Sup |Oe fe(s)] < C'e* L,
s€la,b]

As a consequence, we obtain the inequality

b
e/ —Défé D—Eha?t

< C//eoz—o—ﬁ’
O 0Ot

a

for some constant”. This concludes the proof of Lemma 3.2.

5. Application: least action principle and non-linear Schrédinger equations
5.1. Least action principle and the Schrddinger equation
In this section we gives a variational principle whose extremals are solutions of the

Schrodinger equatian
We consider the following non-linear Schrédinger’s equation (obtained in [4,9]):

. 1oy \2%(. ac@®)\ V¥ act)d?y
[Z’V’”H(a) (’” 2 )+W 2 W]

=(U(x) +a(x))1/f} : (33)

€

wherem >0,y e R, U:R — R, a.:R — C, a(x) is an arbitrary continuous function.
The main result of this section is an analogue oft#aenilton’s principle of least action
(see [1, p. 59)) for (33).

Theorem 5.1. Solutions of the non-linear Schrédinger equati@®8) coincide with ex-
tremals of the functional associated to

L(x(1), Ocx (1), 1) = (1/2m(0ex (1)) + U (x), (34)

on the space of ¥/2 curves, where (1) and vy (x, t) are related by
5 aln(y(x,t))

Oex .

- (35)
0Ot 0x
and ifa.(¢) is such that
1 1
ac(t) = S [(aFx(0)* = (Acx )] = i5[(AZx )" + (A7x (1)) (36)

Remark 5.1. (i) The non-linear Schrodinger equation (33) was derived in [4] using an
analogue of the Euler—Lagrange equation (30) proposed by Nottale [17] in the context of
the Scale relativity theory. This derivation was done in the framework détia fractional
calculusdeveloped in [3] and under an assumption concerning the existence of solutions to
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a particular fractional differential equation. However, as proved in ([9, part |, Section 4.3],
[5]) such assumptions cannot be satisfied.

(i) In [9], Eq. (33) was derived using a “scale quantization procedure,” which gives a
way to pass from classical mechanics to quantum mechanics, avoiding the problems of [4].
However, the Euler—Lagrange equation used in [9] comes from scale quantization, which
is an abstract and formal way to derive the analogue of (30) from the classical Euler—
Lagrange equation (see Section 5.2).

Proof. AsdL/00.x = mOex, its differential is given by
D(IL/30cx) = (0, m, 0),

so that condition (28) is satisfied. By Theorem 3.2, extremals of our functional satisfy the
Euler—Lagrange equation

OcOex (1) dU
We denote
fle = W(m.
X
We apply Theorem 2.2 with = 2, in order to computel. f (x(¢), t)/0O¢. We have
Oe (3In(y) _ Oex 3 (I (x, 1)
o (TR o) = 5 (PR e
d [aIn(y(x,1)
5(4% )(x(t),t)
1 32 /aIn(y(x,1))
+ Eae(l)ﬁ <T> (x(t), l) + 0(61/2)- (38)
Elementary calculus gives
an((x,0) 1oy
dx Y dx
and
9 (1a¢>_ 102y 1 <8w>2
ox\yox) v o2x y2\ox)
Hence, we obtain
Oex 8 (3N (x,1)) . 9In@) 3 (3In(y)
(R e =iz S (TR Yoy

= —1

—i

9

Vox
9

Vox

aIn(y)
ax

(310

ax

>2:|(x(t),t)
>2i|(x(t),t).

I
[1

2
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We then have

Oc foIn(Y(x,1))
E(T(X(’)’ ’)>

Ca .1 ey alnw) 1 1920 1 [y 12
=alr(a) TR ol pae - va(a) e
Lo 1 ov\(. a1y a0 19’y 12
—a[‘ﬁ(a) (’” 2 )WW 2 Jﬁ]““ -

As a consequence, Eq. (38) is equivalent to

ar. 1 /0y \2(. ac@® 1oy] | ac) 1%y oU
sl () (v 50+ 35 [+ 9y e =

By integrating with respect to, we obtain
. 1 (ov\°(. ac®\ 1oy ac) 1d?y
2 (= -7 -7
’Vm[ ¢2(3x> <”’+ 2 >+w o | T2 oz
=U(x) +ax) + o),

wherea (x) is an arbitrary function. This concludes the proofa

A great deal of efforts have been made in order to generalize the classical linear
Schrddinger equation (see, for example, de Broglie [6,7] and Lochak [13]). However, these
generalizations are in general ad hoc one, choosing some particular non-linear terms in or-
der to solve some specific problems of quantum mechanics (see, for example, [2,19,20]).
On the contrary, the non-differentiable least action principle impose a fixed non-linear
term.

In order to recover the classical linear Schrédinger equation, we must specialize the
functional space on which we work. Precisely, we have

Theorem 5.2.Solutions of the Schrddinger equation
oy h? 92
0y v

|:l ¥+%ﬁ=U(XW} , (39)

€

whereh = h /27, coincide with extremals of the functional associated to

L(x(®), Oex (1), 1) = (1/2)m (Qex ()’ + U (x), (40)
on the space of /2 curvesy: x = x(¢) satisfying

1 1 _

(A5 0) = (A7 x )] = i5[(AFx®)* + (A x(1))*] = =il /m. (41)

wherex () and ¥ (x, r) are related by
Oex . hain(y(x,1)
—_— ==

42
Ot m 0x (42)
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Proof. This follows easily from the calculations made in the proof of Theorem 5.1.

For different derivations of the Schrédinger equation, we refer to the work of Nelson on
stochastic mechanid45,16] and Feynman [11], where he developed a principle of least
action, different from the one presented here.

5.2. About the scale relativity theory

This final section is informal and discuss the connexion between our non-differentiable
variational principle and the scale relativity theory. In the following, we do not give a
precise definition to the worftactal. The only property which is assumed is that fractals
are scale dependent objects. We refer to [10] for more details.

The scale relativity theorydeveloped by Nottale [17], gives up the assumption of the
differentiability of space—time by considering what he calfsagtal space-timeand ex-
tending the Einstein’s principle of relativity to scales.

One of the consequences of such a theory is that there exists an infinity of geddesics
and that geodesics are fractal curves. On such curves, one must develop a new differential
calculus taking into account the non-differentiable character of the curve [8]. The scale
derivative introduced by Nottale is the analogue of the scale derivative introduced in this
paper.

Thescale relativity principlecan be state as follow$he equations of physics keep the
same form under scale transformatiqisee [17]).

As a consequence, the scale relativity principle allows us to pass from classical mechan-
ics to quantum mechanic via a simple procedore must change the classical derivative
in Newton’s fundamental equation of dynamics by the scale deriv@@ee[18]).

As Newton’s equation is written via an Euler—Lagrange equation of the form

d[oL JaL
— | — ==, 43
dt |: v ] ax (43)
this procedure, callesicale quantizatiotn [9], gives a quantum analogue of the form
oL oL
Qe[aL]_ oL (44)
O [ dv 0x

whereuv is of course a complex quantity defined by

Oex
= . 45
v=— (45)

As a consequence, scale quantization gives an Euler-Lagrange equation similar to the
one obtained via the non-differentiable variational principle introduced in this paper. The
non-differentiable variational principle can be considered as an attempt to develop the
mathematical foundations of the scale relativity principle.

3 This notion is not well defined, and we refer to [17] for more details.



64 J. Cresson / J. Math. Anal. Appl. 307 (2005) 48-64

References

[1] V.I. Arnold, Mathematical Methods of Classical Mechanics, second ed., Graduate Texts in Mathematics,
vol. 60, Springer, 1989.
[2] 1. Bialynicky-Birula, J. Mycielsky, Ann. Phys. 100 (1976) 62.
[3] F. Ben Adda, J. Cresson, About non-differentiable functions, J. Math. Anal. Appl. 263 (2001) 721-737.
[4] F. Ben Adda, J. Cresson, Quantum derivatives and the Schrodinger equation, Chaos Solitons Fractals 19
(2004) 1323-1334.
[5] F. Ben Adda, J. Cresson, Fractional differential equations and the Schrodinger equation, Appl. Math. Com-
put., in press.
[6] L. de Broglie, Non-Linear Wave Mechanics, Elsevier, Amsterdam, 1960.
[7] L. de Broglie, Nouvelles perspectives en microphysique, Coll. Champs Flammarion, 1992.
[8] J. Cresson, Scale relativity for one dimensional non-differentiable manifolds, Chaos Solitons Fractals 14
(2002) 553-562.
[9] J. Cresson, Scale calculus and the Schrddinger equation, J. Math. Phys. 44 (2003) 4907-4938.
[10] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, 1990.
[11] R.P. Feynman, The development of the space—time view of quantum electrondynamics, Nobel lecture, De-
cember 11, 1965.
[12] R. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, 1965.
[13] G. Lochak, Ann. Fond. Louis de Broglie 22 (1997) 1-22, 187-217.
[14] L.M. Milne-Thomson, The Calculus of Finite Differences, Chelsea, 1981.
[15] E. Nelson, Dynamical Theories of Brownian Motion, second ed., 2001, Princeton Univ. Press, 1967.
[16] E. Nelson, Derivation of the Schroédinger equation from Newtonian mechanics, Phys. Rev. 150 (1966).
[17] L. Nottale, Fractal Space—Time and Microphysics, World Scientific, 1993.
[18] L. Nottale, Scale-relativity and quantization of the universe I. Theoretical framework, Astronom. Astro-
phys. 327 (1997) 867—-899.
[19] M. Pardy, To the nonlinear quantum mechanics, Preprint, 2002, quant-ph/0111105.
[20] W. Puszkarz, On the Staruszkiewicz modification of the Schrédinger equation, Preprint, 1999, quant-
ph/9912006.
[21] M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Berkeley, 1979.
[22] C. Tricot, Courbes et dimension fractale, second ed., Springer, 1999.



