37 research outputs found

    Feasibility and preliminary efficacy of remotely delivering cognitive training to people with schizophrenia using tablets.

    Get PDF
    Limited access to Cognitive Training (CT) for people with schizophrenia (SZ) prevents widespread adoption of this intervention. Delivering CT remotely via tablets may increase accessibility, improve scheduling flexibility, and diminish patient burden.In this reanalysis of data from a larger trial of CT, we compared two samples of individuals with SZ who chose to complete 40 h of CT either on desktop computers in the laboratory (N = 33) or remotely via iPads (N = 41). We examined attrition rates and adherence to training, and investigated whether remote iPad-based CT and in-person desktop-based CT induced significantly different improvements in cognitive and real-world functioning.The attrition rate was 36.6%. On average, participants completed 3.06 h of CT per week. There were no significant between-group differences in attrition and adherence to CT requirements. Participants who completed iPad-based CT were significantly younger and had lower symptoms at baseline compared to participants who completed CT on the lab desktops. Controlling for age and symptom severity, rANCOVA showed that iPad-based and desktop-based CT similarly and significantly improved verbal learning and problem solving. Main effects of time, at trend level significance, were evident in global cognition, verbal memory, quality of life, and social functioning. All group by time interactions were non-significant except for verbal memory, where iPad users showed greater gains. Within-group effect sizes for changes in outcomes were in the small range.Although underpowered and not randomized, this study demonstrates that delivering CT remotely to people with SZ using tablets is feasible and results in retention rates, adherence, and cognitive and functional outcome improvements that are comparable to those observed when CT is delivered in the laboratory. This has important implications in terms of scalability and dissemination of CT. These results require confirmation in larger samples

    Developing a brief tele-psychotherapy model for COVID-19 patients and their family members

    Get PDF
    Objective: The COVID-19 pandemic is negatively impacting the mental health of COVID-19 patients and family members. Given the restrictions limiting in person contact to reduce the spread of the virus, a digital approach is needed to tackle the psychological aftermath of the pandemic. We present the development of a brief remote psychotherapy program for COVID-19 patients and/or their relatives. Methods: We first reviewed the literature on psychotherapeutic interventions for COVID-19 related symptoms. Based on this evidence, we leveraged ongoing clinical experiences with COVID-19 survivors and family members to design an intervention model that could be disseminated and integrated into the workflow of the mental health system. Results: This 8-session model -inspired by constructivist and hermeneutic-phenomenological therapies- serves COVID-19 patients during hospitalization, remission and recovery. This model can also be delivered to people dealing with the COVID-19 hospitalization/discharge of a family member, or the loss of a family member due to COVID-19. Conclusion: We described a remote psychotherapeutic approach to tackle the COVID-19 pandemic psychological aftermath. To date, the approach seems feasible and highly customizable to patients' needs. Studies are underway to test its preliminary efficacy. Once proven efficacious, this treatment model could provide a blueprint for future tele-psychology wide-scale interventions

    Modeling Social Sensory Processing During Social Computerized Cognitive Training for Psychosis Spectrum: The Resting-State Approach

    Get PDF
    Background: Greater impairments in early sensory processing predict response to auditory computerized cognitive training (CCT) in patients with recent-onset psychosis (ROP). Little is known about neuroimaging predictors of response to social CCT, an experimental treatment that was recently shown to induce cognitive improvements in patients with psychosis. Here, we investigated whether ROP patients show interindividual differences in sensory processing change and whether different patterns of SPC are (1) related to the differential response to treatment, as indexed by gains in social cognitive neuropsychological tests and (2) associated with unique resting-state functional connectivity (rsFC). Methods: Twenty-six ROP patients completed 10 h of CCT over the period of 4–6 weeks. Subject-specific improvement in one CCT exercise targeting early sensory processing—a speeded facial Emotion Matching Task (EMT)—was studied as potential proxy for target engagement. Based on the median split of SPC from the EMT, two patient groups were created. Resting-state activity was collected at baseline, and bold time series were extracted from two major default mode network (DMN) hubs: left medial prefrontal cortex (mPFC) and left posterior cingulate cortex (PCC). Seed rsFC analysis was performed using standardized Pearson correlation matrices, generated between the average time course for each seed and each voxel in the brain. Results: Based on SPC, we distinguished improvers—i.e., participants who showed impaired performance at baseline and reached the EMT psychophysical threshold during CCT—from maintainers—i.e., those who showed intact EMT performance at baseline and sustained the EMT psychophysical threshold throughout CCT. Compared to maintainers, improvers showed an increase of rsFC at rest between PCC and left superior and medial frontal regions and the cerebellum. Compared to improvers, maintainers showed increased rsFC at baseline between PCC and superior temporal and insular regions bilaterally. Conclusions: In ROP patients with an increase of connectivity at rest in the default mode network, social CCT is still able to induce sensory processing changes that however do not translate into social cognitive gains. Future studies should investigate if impairments in short-term synaptic plasticity are responsible for this lack of response and can be remediated by pharmacological augmentation during CCT

    Neural signal during immediate reward anticipation in schizophrenia: Relationship to real-world motivation and function

    Get PDF
    Amotivation in schizophrenia is a central predictor of poor functioning, and is thought to occur due to deficits in anticipating future rewards, suggesting that impairments in anticipating pleasure can contribute to functional disability in schizophrenia. In healthy comparison (HC) participants, reward anticipation is associated with activity in frontal–striatal networks. By contrast, schizophrenia (SZ) participants show hypoactivation within these frontal–striatal networks during this motivated anticipatory brain state. Here, we examined neural activation in SZ and HC participants during the anticipatory phase of stimuli that predicted immediate upcoming reward and punishment, and during the feedback/outcome phase, in relation to trait measures of hedonic pleasure and real-world functional capacity. SZ patients showed hypoactivation in ventral striatum during reward anticipation. Additionally, we found distinct differences between HC and SZ groups in their association between reward-related immediate anticipatory neural activity and their reported experience of pleasure. HC participants recruited reward-related regions in striatum that significantly correlated with subjective consummatory pleasure, while SZ patients revealed activation in attention-related regions, such as the IPL, which correlated with consummatory pleasure and functional capacity. These findings may suggest that SZ patients activate compensatory attention processes during anticipation of immediate upcoming rewards, which likely contribute to their functional capacity in daily life

    A multivariate neuromonitoring approach to neuroplasticity-based computerized cognitive training in recent onset psychosis

    Get PDF
    Two decades of studies suggest that computerized cognitive training (CCT) has an effect on cognitive improvement and the restoration of brain activity. Nevertheless, individual response to CCT remains heterogenous, and the predictive potential of neuroimaging in gauging response to CCT remains unknown. We employed multivariate pattern analysis (MVPA) on whole-brain resting-state functional connectivity (rsFC) to (neuro)monitor clinical outcome defined as psychosis-likeness change after 10-hours of CCT in recent onset psychosis (ROP) patients. Additionally, we investigated if sensory processing (SP) change during CCT is associated with individual psychosis-likeness change and cognitive gains after CCT. 26 ROP patients were divided into maintainers and improvers based on their SP change during CCT. A support vector machine (SVM) classifier separating 56 healthy controls (HC) from 35 ROP patients using rsFC (balanced accuracy of 65.5%,P < 0.01) was built in an independent sample to create a naturalistic model representing the HC-ROP hyperplane. This model was out-of-sample cross-validated in the ROP patients from the CCT trial to assess associations between rsFC pattern change, cognitive gains and SP during CCT. Patients with intact SP threshold at baseline showed improved attention despite psychosis status on the SVM hyperplane at follow-up (p < 0.05). Contrarily, the attentional gains occurred in the ROP patients who showed impaired SP at baseline only if rsfMRI diagnosis status shifted to the healthy-like side of the SVM continuum. Our results reveal the utility of MVPA for elucidating treatment response neuromarkers based on rsFC-SP change and pave the road to more personalized interventions

    Auditory Domain Sensitivity and Neuroplasticity-Based Targeted Cognitive Training in Autism Spectrum Disorder

    No full text
    Sensory processing, along with the integration of external inputs into stable representations of the environment, is integral to social cognitive functioning; challenges in these processes have been reported in Autism Spectrum Disorder (ASD) since the earliest descriptions of autism. Recently, neuroplasticity-based targeted cognitive training (TCT) has shown promise as an approach to improve functional impairments in clinical patients. However, few computerized and adaptive brain-based programs have been trialed in ASD. For individuals with sensory processing sensitivities (SPS), the inclusion of some auditory components in TCT protocols may be aversive. Thus, with the goal of developing a web-based, remotely accessible intervention that incorporates SPS concerns in the auditory domain, we assessed auditory SPS in autistic adolescents and young adults (N = 25) who started a novel, computerized auditory-based TCT program designed to improve working memory and information processing speed and accuracy. We found within-subject gains across the training program and between pre/post-intervention assessments. We also identified auditory, clinical, and cognitive characteristics that are associated with TCT outcomes and program engagement. These initial findings may be used to inform therapeutic decisions about which individuals would more likely engage in and benefit from an auditory-based, computerized TCT program
    corecore