7 research outputs found

    Associations between hippocampal morphometry and neuropathologic markers of Alzheimer's disease using 7 T MRI

    Get PDF
    Hippocampal atrophy, amyloid plaques, and neurofibrillary tangles are established pathologic markers of Alzheimer's disease. We analyzed the temporal lobes of 9 Alzheimer's dementia (AD) and 7 cognitively normal (NC) subjects. Brains were scanned post-mortem at 7 Tesla. We extracted hippocampal volumes and radial distances using automated segmentation techniques. Hippocampal slices were stained for amyloid beta (Aβ), tau, and cresyl violet to evaluate neuronal counts. The hippocampal subfields, CA1, CA2, CA3, CA4, and subiculum were manually traced so that the neuronal counts, Aβ, and tau burden could be obtained for each region. We used linear regression to detect associations between hippocampal atrophy in 3D, clinical diagnosis and total as well as subfield pathology burden measures. As expected, we found significant correlations between hippocampal radial distance and mean neuronal count, as well as diagnosis. There were subfield specific associations between hippocampal radial distance and tau in CA2, and cresyl violet neuronal counts in CA1 and subiculum. These results provide further validation for the European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Initiative Center Harmonized Hippocampal Segmentation Protocol (HarP)

    Relationship between hippocampal atrophy and neuropathology markers: A 7T MRI validation study of the EADC‐ADNI Harmonized Hippocampal Segmentation Protocol

    No full text
    ObjectiveThe pathologic validation of European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Initiative Center Harmonized Hippocampal Segmentation Protocol (HarP).MethodsTemporal lobes of nine Alzheimer's disease (AD) and seven cognitively normal subjects were scanned post-mortem at 7 Tesla. Hippocampal volumes were obtained with HarP. Six-micrometer-thick hippocampal slices were stained for amyloid beta (Aβ), tau, and cresyl violet. Hippocampal subfields were manually traced. Neuronal counts, Aβ, and tau burden for each hippocampal subfield were obtained.ResultsWe found significant correlations between hippocampal volume and Braak and Braak staging (ρ = -0.75, P = .001), tau (ρ = -0.53, P = .034), Aβ burden (ρ = -0.61, P = .012), and neuronal count (ρ = 0.77, P < .001). Exploratory subfield-wise significant associations were found for Aβ in Cornu Ammonis (CA)1 (ρ = -0.58, P = .019) and subiculum (ρ = -0.75, P = .001), tau in CA2 (ρ = -0.59, P = .016), and CA3 (ρ = -0.5, P = .047), and neuronal count in CA1 (ρ = 0.55, P = .028), CA3 (ρ = 0.65, P = .006), and CA4 (ρ = 0.76, P = .001).ConclusionsThe observed associations provide pathological confirmation of hippocampal morphometry as a valid biomarker for AD and pathologic validation of HarP
    corecore