2,070 research outputs found
Numerical computation for the impact of flow rate and rotational speed on the flow-induced noise of the centrifugal pump
This paper adopted an indirect mixed method (computational fluid dynamics + boundary element method) based on computational fluid dynamics + Lighthill acoustic analogy theories to compute the flow field and flow-induced noise of the centrifugal pump, and experimentally verified the correctness of computational results. The pressure distribution of the centrifugal pump through an unsteady computation showed that there were obvious separation vortexes at the outlet of the centrifugal pump and pressure at the edge of impellers was obviously more than that of other parts. There were many peak noises on the sound pressure level curve at the outlet of the centrifugal pump. The sound pressure level gradually decreased with the increased frequency. However, sound pressure levels will be a stable value when the analyzed frequency was more than 3000 Hz. Sound pressures at the inlet and outlet of the centrifugal pump were relatively large. Sound pressures at the inlet pipeline gradually decreased from outside to inside and sound pressures of outlet pipeline gradually decreased from inside to outside. The structure of the centrifugal pump was not completely symmetrical, and the sound field was not symmetrical. In addition, the radiation noises in the external field at the inlet and outlet of the centrifugal pump were similar to the radiation of many point sound sources. Peak values of flow-induced noises at the outlet of the centrifugal pump were more than those at the inlet of the centrifugal pump under the working condition of different rotational speeds and flow rates. In the meanwhile, sound pressure levels at the inlet and outlet of the centrifugal pump did not show many differences in amplitudes when the rotational speed was small. When the rotational speed reached up to 3000 r/min, the sound pressure at inlet was more than that at outlet within 1500 Hz-4500 Hz. At many peak frequency points, peak noises at outlet were obviously more than those at inlet, which thus proved that fluid caused large pressure fluctuations due to the interaction between impellers and volutes after flowing through the centrifugal pump and flow-induced noises caused by pressure fluctuations were mainly reflected in blade frequency. The change of the rotational speed and flow rate would not only increase the flow-induced noise in the centrifugal pump, but also seriously affect the external radiation sound field of the centrifugal pump
Non-intrusive stochastic analysis with parameterized imprecise probability models: I. Performance estimation
© 2019 Elsevier Ltd Uncertainty propagation through the simulation models is critical for computational mechanics engineering to provide robust and reliable design in the presence of polymorphic uncertainty. This set of companion papers present a general framework, termed as non-intrusive imprecise stochastic simulation, for uncertainty propagation under the background of imprecise probability. This framework is composed of a set of methods developed for meeting different goals. In this paper, the performance estimation is concerned. The local extended Monte Carlo simulation (EMCS) is firstly reviewed, and then the global EMCS is devised to improve the global performance. Secondly, the cut-HDMR (High-Dimensional Model Representation) is introduced for decomposing the probabilistic response functions, and the local EMCS method is used for estimating the cut-HDMR component functions. Thirdly, the RS (Random Sampling)-HDMR is introduced to decompose the probabilistic response functions, and the global EMCS is applied for estimating the RS-HDMR component functions. The statistical errors of all estimators are derived, and the truncation errors are estimated by two global sensitivity indices, which can also be used for identifying the influential HDMR components. In the companion paper, the reliability and rare event analysis are treated. The effectiveness of the proposed methods are demonstrated by numerical and engineering examples
Non-intrusive stochastic analysis with parameterized imprecise probability models: II. Reliability and rare events analysis
© 2019 Elsevier Ltd Structural reliability analysis for rare failure events in the presence of hybrid uncertainties is a challenging task drawing increasing attentions in both academic and engineering fields. Based on the new imprecise stochastic simulation framework developed in the companion paper, this work aims at developing efficient methods to estimate the failure probability functions subjected to rare failure events with the hybrid uncertainties being characterized by imprecise probability models. The imprecise stochastic simulation methods are firstly improved by the active learning procedure so as to reduce the computational costs. For the more challenging rare failure events, two extended subset simulation based sampling methods are proposed to provide better performances in both local and global parameter spaces. The computational costs of both methods are the same with the classical subset simulation method. These two methods are also combined with the active learning procedure so as to further substantially reduce the computational costs. The estimation errors of all the methods are analyzed based on sensitivity indices and statistical properties of the developed estimators. All these new developments enrich the imprecise stochastic simulation framework. The feasibility and efficiency of the proposed methods are demonstrated with numerical and engineering test examples
PFresGO: an attention mechanism-based deep-learning approach for protein annotation by integrating gene ontology inter-relationships
MOTIVATION: The rapid accumulation of high-throughput sequence data demands the development of effective and efficient data-driven computational methods to functionally annotate proteins. However, most current approaches used for functional annotation simply focus on the use of protein-level information but ignore inter-relationships among annotations. RESULTS: Here, we established PFresGO, an attention-based deep-learning approach that incorporates hierarchical structures in Gene Ontology (GO) graphs and advances in natural language processing algorithms for the functional annotation of proteins. PFresGO employs a self-attention operation to capture the inter-relationships of GO terms, updates its embedding accordingly and uses a cross-attention operation to project protein representations and GO embedding into a common latent space to identify global protein sequence patterns and local functional residues. We demonstrate that PFresGO consistently achieves superior performance across GO categories when compared with 'state-of-the-art' methods. Importantly, we show that PFresGO can identify functionally important residues in protein sequences by assessing the distribution of attention weightings. PFresGO should serve as an effective tool for the accurate functional annotation of proteins and functional domains within proteins. AVAILABILITY AND IMPLEMENTATION: PFresGO is available for academic purposes at https://github.com/BioColLab/PFresGO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online
Ecological Genetics of Chinese Rhesus Macaque in Response to Mountain Building: All Things Are Not Equal
Pliocene uplifting of the Qinghai-Tibetan Plateau (QTP) and Quaternary glaciation may have impacted the Asian biota more than any other events. Little is documented with respect to how the geological and climatological events influenced speciation as well as spatial and genetic structuring, especially in vertebrate endotherms. Macaca mulatta is the most widely distributed non-human primate. It may be the most suitable model to test hypotheses regarding the genetic consequences of orogenesis on an endotherm
Soluble CD83 Alleviates Experimental Autoimmune Uveitis by Inhibiting Filamentous Actin-Dependent Calcium Release in Dendritic Cells
Soluble CD83 (sCD83) is the extracellular domain of the membrane-bound CD83 molecule, and known for its immunoregulatory functions. Whether and how sCD83 participates in the pathogenesis of uveitis, a serious inflammatory disease of the eye that can cause visual disability and blindness, is unknown. By flow cytometry and imaging studies, we show that sCD83 alleviates experimental autoimmune uveitis (EAU) through a novel mechanism. During onset and recovery of EAU, the level of sCD83 rises in the serum and aqueous humor, and CD83+ leukocytes infiltrate the inflamed eye. Systemic or topical application of sCD83 exerts a protective effect by decreasing inflammatory cytokine expression, reducing ocular and splenic leukocyte including CD4+ T cells and dendritic cells (DCs). Mechanistically, sCD83 induces tolerogenic DCs by decreasing the synaptic expression of co-stimulatory molecules and hampering the calcium response in DCs. These changes are caused by a disruption of the cytoskeletal rearrangements at the DC–T cell contact zone, leading to altered localization of calcium microdomains and suppressed T-cell activation. Thus, the ability of sCD83 to modulate DC-mediated inflammation in the eye could be harnessed to develop new immunosuppressive therapeutics for autoimmune uveitis
Achieving blood pressure control targets in hypertensive patients of rural China - A pilot randomized trial
Background: This study aimed to test the feasibility and titration methods used to achieve specific blood pressure (BP) control targets in hypertensive patients of rural China. Methods: A randomized, controlled, open-label trial was conducted in Rongcheng, China. We enrolled 105 hypertensive participants aged over 60 years, and who had no history of stroke or cardiovascular disease. The patients were randomly assigned to one of three systolic-BP target groups: standard: 140 to \u3c 150 mmHg; moderately intensive: 130 to \u3c 140 mmHg; and intensive: \u3c 130 mmHg. The patients were followed for 6 months. Discussion: The optimal target for systolic blood pressure (SBP) lowering is still uncertain worldwide and such information is critically needed, especially in China. However, in China the rates of awareness, treatment and control are only 46.9%, 40.7%, and 15.3%, respectively. It is challenging to achieve BP control in the real world and it is very important to develop population-specific BP-control protocols that fully consider the population\u27s characteristics, such as age, sex, socio-economic status, compliance with medication, education level, and lifestyle. This randomized trial showed the feasibility and safety of the titration protocol to achieve desirable SBP targets (\u3c 150, \u3c 140, and \u3c 130 mmHg) in a sample of rural, Chinese hypertensive patients. The three BP target groups had similar baseline characteristics. After 6 months of treatment, the mean SBP measured at an office visit was 137.2 mmHg, 131.1 mmHg, and 124.2 mmHg, respectively, in the three groups. Home BP and central aortic BP measurements were also obtained. At 6 months, home BP measurements (2 h after drug administration) showed a mean SBP of 130.9 mmHg in the standard group, 124.9 mmHg in the moderately intensive group, and 119.7 mmHg in the intensive group. No serious adverse events were recorded over the 6-month study period. Rates of adverse events, including dry cough, palpitations, and arthralgia, were low and showed no significant differences between the three groups. This trial provided real-world experience and laid the foundation for a future, large-scale, BP target study. Trial registration: Feasibility Study of the Intensive Systolic Blood Pressure Control; ClinicalTrials.gov, ID: NCT02817503. Registered retrospectively on 29 June 2016
- …