16 research outputs found

    Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing

    Get PDF
    The most enriched pathways that were identified for the target genes. A total of 53 most enriched pathways of target gene annotated in this study. (XLS 41 kb

    RI/MOM and RI/SMOM renormalization of quark bilinear operators using the overlap fermion

    Full text link
    We present the vector, scalar and tensor renormalization constants (RCs) using the overlap fermion on dynamical fermion gauge configurations with either the Domain wall fermion action or HISQ actions, using RI/MOM and RI/SMOM as the intermediate scheme at the lattice spacing aa from 0.04 fm to 0.12 fm. The results show that RI/MOM and RI/SMOM can provide consistent renormalization constants under the MSˉ\bar{\textrm{MS}} scheme, after proper a2p2a^2p^2 extrapolations. But at p∼2p\sim 2 GeV, both the RI/MOM and RI/SMOM suffer from nonperturbative effects which cannot be removed by the perturbative matching. The comparison between the results with different sea actions also suggests that the renormalization constant is discernibly sensitive to the lattice spacing but not to the bare gauge coupling in the gauge action.Comment: 21 pages, 15 figure

    Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi

    Get PDF
    [EN]Fruit pathogens can contribute to the acidification or alkalinization of the host environment. This capability has been used to divide fungal pathogens into acidifying and/or alkalinizing classes. Here, we show that diverse classes of fungal pathogens—Colletotrichum gloeosporioides, Penicillium expansum, Aspergillus nidulans and Fusarium oxysporum—secrete small pH-affecting molecules. These molecules modify the environmental pH, which dictates acidic or alkaline colonizing strategies, and induce the expression of PACC-dependent genes. We show that, in many organisms, acidification is induced under carbon excess, i.e. 175 mm sucrose (the most abundant sugar in fruits). In contrast, alkalinization occurs under conditions of carbon deprivation, i.e. less than 15 mm sucrose. The carbon source is metabolized by glucose oxidase (gox2) to gluconic acid, contributing to medium acidification, whereas catalysed deamination of non-preferred carbon sources, such as the amino acid glutamate, by glutamate dehydrogenase 2 (gdh2), results in the secretion of ammonia

    CgGCS, Encoding a Glucosylceramide Synthase, Is Required for Growth, Conidiation and Pathogenicity in Colletotrichum gloeosporioides

    Get PDF
    Fungal glucosylceramide plays important role in cell division, hyphal formation and growth, spore germination and the modulation of virulence and has recently been considered as target for small molecule inhibitors. In this study, we characterized CgGCS, a protein encoding a glucosylceramide synthase (GCS) in Colletotrichum gloeosporioides. Disruption of CgGCS resulted in a severe reduction of mycelial growth and defects in conidiogenesis. Sphingolipid profile analysis revealed large decreases in glucosylceramide production in the mutant strains. Pathogenicity assays indicated that the ability of the ΔCgGCS mutants to invade both tomato and mango hosts was almost lost. In addition, the expression levels of many genes, especially those related to metabolism, were shown to be affected by the mutation of CgGCS via transcriptome analysis. Overall, our results demonstrate that C. gloeosporioides glucosylceramide is an important regulatory factor in fungal growth, conidiation, and pathogenesis in hosts

    Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4

    Get PDF
    CITATION: Liu, S. et al. 2020. Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4. New Phytologist, 225:913–929, doi:10.1111/nph.16193.The original publication is available at https://nph.onlinelibrary.wiley.comFusaric acid (FSA) is a phytotoxin produced by several Fusarium species and has been associated with plant disease development, although its role is still not well understood. Mutation of key genes in the FSA biosynthetic gene (FUB) cluster in Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) reduced the FSA production, and resulted in decreased disease symptoms and reduced fungal biomass in the host banana plants. When pretreated with FSA, both banana leaves and pseudostems exhibited increased sensitivity to Foc TR4 invasion. Banana embryogenic cell suspensions (ECSs) treated with FSA exhibited a lower rate of O2 uptake, loss of mitochondrial membrane potential, increased reactive oxygen species (ROS) accumulation, and greater nuclear condensation and cell death. Consistently, transcriptomic analysis of FSA-treated ECSs showed that FSA may induce plant cell death through regulating the expression of genes involved in mitochondrial functions. The results herein demonstrated that the FSA from Foc TR4 functions as a positive virulence factor and acts at the early stage of the disease development before the appearance of the fungal hyphae in the infected tissues.https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16193Publisher's versio

    Antifungal Activities of Crude Extractum from Camellia semiserrata Chi (Nanshancha) Seed Cake Against Colletotrichum musae, Colletotrichum gloeosporioides and Penicillium italicum in vitro and in vivo Fruit Test

    No full text
    Antifungal activities of crude extractum of Nanshancha Seed Cake (NSC), to inactivate postharvest pathogens were investigated. Highest inhibitory rate was found against C. musae, C. gloeosporioides and C. papaya P.Henn, which was much stronger than that by tea saponin. Compared to tea saponin, effects of NSC extractum was relatively weak and similar on C. gloeosporioides Penzig and P. italicum. In an in vivo study, best controlling effects by NSC extractum was found with banana anthracnose disease development, which showed no inhibitory effects by tea saponin. NSC extractum controlled in vitro C. musae growth through directly inhibiting germination rate and germ tube elongation, and causing distortation, rupture and indentation of C. musae mycelium. In banana fruit subject to C. musae inoculation, higher PAL, POD, GLU and CHT activity was observed in banana fruit treated with crude NSC extractum than that of water control fruits. Current study proved the best controlling effects of crude NSC extractum in C. musae in vitro and in vivo development, which through direct inhibition of C. musae growth and increasing defense system of the banana fruit

    Insulation Performance and Simulation Analysis of SiO<sub>2</sub>-Aramid Paper under High-Voltage Bushing

    No full text
    The long-term safe and stable operation of oil-impregnated paper (OIP) bushings is of great significance to the operation of power systems. With the growth of OIP bushing, its internal insulation will gradually decay. Aramid insulation paper has excellent thermal aging characteristics and its insulation performance can be improved by using nano-modification technology. In this paper, the nano-SiO2 particles were used as the modified additives, and the modified aramid insulation paper was prepared through four steps: ultrasonic stirring, fiber dissociation, paper sample copying and superheated calendering. The microscopic physical morphology and chemical components of the insulation specimens before and after modification were analyzed by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), and an OIP bushing model based on the modified aramid insulation paper was constructed and its electric field distribution was analyzed. The simulation results show that the use of SiO2-modified aramid insulation paper can improve the electric field distribution of OIP bushings and increase the operating life of power transformers

    Molecular Assembly of a Durable HRP-AuNPs/PEDOT:BSA/Pt Biosensor with Detailed Characterizations

    No full text
    In this study, we provided the detailed characterizations of our recent HRP-AuNPs/PEDOT:BSA/Pt biosensor, constructed through a simple fabrication procedure with improved stability and good sensitivity. Raman and Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy not only confirmed the synthesis of conductive PEDOT where BSA was the template for the polymerization, but also provided further insights into the stable immobilization of AuNP on the PEDOT:BSA film. Scanning electron microscopy revealed that the attachment of AuNPs were stable under a high salt environment. The current technology demonstrates a feasible procedure to form a functional AuNPs/PEDOT:BSA film that has potential applications in the fabrication of various biosensors and electric devices

    Additional file 3: of Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing

    No full text
    Detailed information on the identified novel miRNAs. Novel miRNAs identified in three libraries. miRNA ID, length, sequence, location, MFE for precursor miRNA, structure of precursor, and total reads for mature miRNA are listed (XLSX 1228 kb
    corecore