11 research outputs found

    LDH Ternary Nanocomposites: g-C<sub>3</sub>N<sub>4</sub> Intercalated ZnOMg-Al for Superior Photocatalytic Activity towards Dye Degradation

    Get PDF
    Photocatalytic dye degradation has received more attention as an affordable and effective way to treat the dye polluted water. In the present chapter, we are going to discuss; (i) the preparation and photophysical characterization of g-C3N4 intercalated ZnO\Mg-Al LDH, a novel ternary nanocomposite, and (ii) its visible light photocatalytic degradation activity against the methylene blue dye. LDHs are 2D materials composed of “brucite-like” cationic layers where an inclusion of trivalent cations presents an overall positive charge to the nanosheets. g-C3N4 is one of the organic semiconductor photocatalyst which active for several types of reactions such as CO2 reduction, water splitting, and degradation because of its stable, non-toxic, and earth-abundant nature. Mainly, the development of numerous 2D g-C3N4 nanosheets has been extensively used in the field of photocatalyst. By the combination heterojunction with 2D/2D interface can effectively improve the photocatalytic activity. The nitrogen-rich g-C3N4 intercalated ZnO\Mg-Al LDH ternary nanocomposite formation could follow the direct dye degradation process and results enhance the visible light absorption. The enhanced photocatalytic activity is mainly due to the improved charge separation rate and high number of photogenerated electrons. The large number of photogenerated electrons and high charge separation efficiency are effectively influence the dye degradation efficiency

    Effect of Fiber Orientation on Physical and Mechanical Properties of Typha angustifolia Natural Fiber Reinforced Composites

    Get PDF
    Natural fiber-reinforced polymer composites (NFRPC) are sustainable, renewable, and potential replacements in lieu of non-renewable and non-biodegradable synthetic fiber-reinforced composites. The application spectrum of natural fiber composites is widening day by day due to rigorous research carried out on these materials. Accordingly, the current study aims to determine the mechanical properties like impact and compressive strength and physical properties like water absorption behavior for Typha angustifolia (TA) fibers reinforced composites (TFRC). Composites were fabricated using the compression molding method with fibers in unidirectional (UD) and bidirectional (BD) orientation with a weight fraction of 10, 15, and 20%. X-ray diffraction studies were carried out on the fabricated composites to ascertain the presence of micro constituents. All the tests were conducted according to ASTM standards. Results indicated that 20% of TFR composites in BD orientation outperformed other composites. Failure surface morphology was analyzed using scanning electron microscopic analysis (SEM)

    Rod-Shaped Carbon Aerogel-Assisted CdS Nanocomposite for the Removal of Methylene Blue Dye and Colorless Phenol

    No full text
    A carbon aerogel (CA)-assisted CdS nanocomposite was prepared by hydrothermal process and was investigated as a photocatalyst towards the photodegradation of methylene blue (MB) dye and colorless phenol under visible light irradiation (VLI). CdS have attracted wide attention due to their relatively narrow band gap for the visible light effect and the suitably negative potential of the conduction band (CB) edge for the neutralization of H+ ions. The obtained characterization results suggest that the CA-assisted CdS nanocomposite has enhanced photophysical properties, a more surface area, and the desired morphology at the nm scale. Under optimization, CdS CA 8% shows superior catalytic activity for degradation compared with other samples. The photocatalytic activities of the as-synthesized samples were examined under VLI through the MB and phenol degradation. Compared with pure CA and CdS, the CA (8%)-assisted CdS nanoparticles (NPs) offer significantly enhanced photocatalytic efficiency for MB and phenol. The mechanism of photocatalytic reaction was examined by adding various scavengers, and the results revealed that the holes generated in CA (8%)-assisted CdS NPs have a crucial impact on the visible light photocatalytic process. The improved photocatalytic degradation was due to the strong interaction between the CA and CdS NPs
    corecore