806 research outputs found

    Evaluation of brick kiln performances using computational fluid dynamics (CFD)

    Get PDF
    Modern history of civilization is concurrent to the use of brick and its manufacturing. Nowadays tunnel kiln is the most widely used technology for brick production. This paper tries to provide an idea of the brick making process in tunnel kiln. The computational fluid dynamics (CFD) software, ANSYS CFX is being used to evaluate kiln performances using gas as its fuel. Simplified geometry was drawn and meshed using appropriate tools of ANSYS CFX. Several pertinent assumptions were made to reduce the complication of the simulation. Turbulence, combustion, radiation and NO models were adopted for simulation of a realistic tunnel kiln environment. Simulated temperature profile almost replicates industrial kiln situation as found in existing literature. CFD analysis helps to simulate the temperature profile of the brick kilns, the mass flow fractions of CO2 and NO emissions at outlet, and also the air velocity profile inside the kiln. The simulated temperature generated in a tunnel kiln is found to be between 1300 K and 300 K. CO2 and NOx volume generated inside the kiln is estimated as 1.01 m3/s and 0.108 m3/s respectively

    Metal-organic vapor-phase epitaxial growth of InGaN and InAlN for multi-junction tandem solar cells

    Get PDF
    MOVPE growth of InGaN and InAlN has been studied to prepare a wanted band gap from 0.65 to 2.5 eV for multi-junction tandem solar cells. The main subjects in the growth of InGaN are the suppression of phase separation and metallic In incorporation and the control of composition in grown films. Both phase separation and metallic In segregation can be avoided by choosing the appropriate substrate position on the susceptor. By optimizing growth temperature and TMI/(TMI+TEG) molar ratio, InGaN films with full composition range are successfully grown. The Mg-doping behavior of MOVPE InGaN (In composition 0.1~0.4) is also studied using Cp2Mg as a Mg source. The growth behavior of InAlN is studied with the dominant parameters such as growth pressure, TMI/(TMI+TMA) molar ratio and substrate position on the susceptor. The major difficulty in the InAlN growth is found to be the adduct formation by the parasitic reaction of TMA and NH3. By employing the atmospheric-pressure growth, adduct-free InAlN films are grown with a reasonable growth rate (~ 1m/h). This enables us to grow InAlN films with an In content from 0.3 to 1, corresponding to band gaps from 3.6 to 0.65 eV. In order to demonstrate an ability to prepare these different alloys sequentially, InAlN/InGaN hetero-structures are prepared and the photo-response is observed for the first time for an n-InAlN/p-InGaN hetero-junction

    Evaluation of predictive models for post-fire debris flow occurrence in the western United States

    Get PDF
    Abstract. Rainfall-induced debris flows in recently burned mountainous areas cause significant economic losses and human casualties. Currently, prediction of post-fire debris flows is widely based on the use of power-law thresholds and logistic regression models. While these procedures have served with certain success in existing operational warning systems, in this study we investigate the potential to improve the efficiency of current predictive models with machine-learning approaches. Specifically, the performance of a predictive model based on the random forest algorithm is compared with current techniques for the prediction of post-fire debris flow occurrence in the western United States. The analysis is based on a database of post-fire debris flows recently published by the United States Geological Survey. Results show that predictive models based on random forest exhibit systematic and considerably improved performance with respect to the other models examined. In addition, the random-forest-based models demonstrated improvement in performance with increasing training sample size, indicating a clear advantage regarding their ability to successfully assimilate new information. Complexity, in terms of variables required for developing the predictive models, is deemed important but the choice of model used is shown to have a greater impact on the overall performance

    Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    Get PDF
    Conventional textile coloration is a wet process involving high levels of water and chemicals consumption and wastewater generation. However, colour in textiles can also be generated by other mechanisms such as: absorption, emission, diffraction, interference and photochromism.[1] Chromotropic effect refers to reversible colour transformation due to external chemical or physical influence.[2] Photonic crystals are an important class of chromotropic materials. Colloidal crystals with a periodicity on the scale of half the wavelength of visible light exhibit structural colours similar to natural opals due to a diffraction effects that result in the appearance of a photonic band gap that forbids propagation of certain wavelengths.[3] Structural colouration is emerging as an innovative technology to produce colourful textiles materials.[4] Various colours impossible to reproduce by chemical coloration can be created by modifying the periodicity of the nanostructures or the environmental conditions using a single material.[5, 6] Photonic crystals can be applied on textile fabrics by colloid self-assembly and the structural colours can be controlled by adjusting the microspheres size and the viewing angles.[7] However, their application for textile structural coloration has been barely reported.[8] In this work, P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics. The structural colours of the deposited photonic crystals on the fabrics and its washing fastness were investigated.info:eu-repo/semantics/publishedVersio

    Evidence of Balanced Diversity at the Chicken Interleukin 4 Receptor Alpha Chain Locus

    Get PDF
    Background: The comparative analysis of genome sequences emerging for several avian species with thefully sequenced chicken genome enables the genome-wide investigation of selective processes infunctionally important chicken genes. In particular, because of pathogenic challenges it is expected thatgenes involved in the chicken immune system are subject to particularly strong adaptive pressure.Signatures of selection detected by inter-species comparison may then be investigated at the populationlevel in global chicken populations to highlight potentially relevant functional polymorphisms.Results: Comparative evolutionary analysis of chicken (Gallus gallus) and zebra finch (Taeniopygia guttata)genes identified interleukin 4 receptor alpha-chain (IL-4Rα), a key cytokine receptor as a candidate with asignificant excess of substitutions at nonsynonymous sites, suggestive of adaptive evolution. Resequencingand detailed population genetic analysis of this gene in diverse village chickens from Asia and Africa,commercial broilers, and in outgroup species red jungle fowl (JF), grey JF, Ceylon JF, green JF, grey francolinand bamboo partridge, suggested elevated and balanced diversity across all populations at this gene, actingto preserve different high-frequency alleles at two nonsynonymous sites.Conclusion: Haplotype networks indicate that red JF is the primary contributor of diversity at chickenIL-4Rα: the signature of variation observed here may be due to the effects of domestication, admixtureand introgression, which produce high diversity. However, this gene is a key cytokine-binding receptor inthe immune system, so balancing selection related to the host response to pathogens cannot be excluded

    Identification and molecular characterisation of Lausanne Institutional Biobank participants with familial hypercholesterolaemia - a proof-of-concept study.

    Get PDF
    We aimed to identify familial hypercholesterolaemia mutation carriers among participants to the Lausanne Institutional Biobank (BIL). Our experimental workflow was designed as a proof-of-concept demonstration of the resources and services provided by our integrated institutional clinical research support platform. Familial hypercholesterolaemia was used as a model of a relatively common yet often underdiagnosed and inadequately treated Mendelian disease. Clinical and laboratory information was extracted from electronic hospital records. Patients were selected using elevated plasma cholesterol levels (total cholesterol ≥7.5 mM or low-density lipoprotein cholesterol ≥5 mM), premature coronary artery disease status and age (18-60 yr) as main inclusion criteria. LDLR, APOB and PCSK9 were analysed by high-throughput DNA sequencing. The most relevant mutations were confirmed by Sanger sequencing. Of 23 737 patients contacted by the BIL, 17 760 individuals consented to participate and 13 094 wished to be recontacted if there were findings requiring clinical action. Plasma cholesterol records were available for 5111 participants, of whom 94 were selected for genetic screening. Twenty-five of the tested patients presented with premature coronary artery disease while 69 had no such diagnosis. Seven heterozygous carriers of eight rare coding missense variants were identified. Three mutations were pathogenic (APOB p.R3527Q) or likely pathogenic (LDLR p.C27W, LDLR p.P526S) for hypercholesterolaemia, while the others were either benign or of unknown significance. One patient was a double heterozygote for variants APOB p.R3527Q and LDLR p.P526S. This work illustrates how clinical and translational research can benefit from a dedicated platform integrating both a hospital-based biobank and a data support team

    Yield and phosphorus efficiency of some lowland rice varieties at different levels of soil‐available phosphorus

    Get PDF
    A field experiment was conducted on an Aeric Haplaquept soil to study the effect of phosphorus (P) deficiency in soil on the P nutrition and yield of five modern varieties of rice, viz., Purbachi, BR1, BR3, BR14, and BR29, popular with the rice farmers of Bangladesh. Soil-available P in the different plots of the experimental field varied widely, from 2.8 to 16.4 ppm. This plot to plot variation in soil-available P content resulted from differences in the total amounts (0 to 480 kg ha -1) of P the plots had received over a period of 8 years in a long-term P fertilizer trial conducted previously in the same field. Phosphorus deficiency in soil drastically reduced the grain yield of all the rice varieties. In severely P deficient plots, where soil-available P was around 3 ppm, the yield was less than 1 ton ha -1 while in plots containing an adequate P level, i.e., >6 ppm, the yield was more than 4 t ha -1. Rice yield increased linearly with an increase in soil P content up to 6 ppm, and the highest grain yield for any variety, obtained at 6-7 ppm of soil-available P leveled off at this point. Soil P deficiency not only decreased rice yield severely but also decreased P content in straw and grain drastically. However, differences among rice varieties were noted in P nutrition, particularly at low soil P levels. The rice varieties differed markedly also in respect of internal P efficiency. The BR29 showed the highest internal P efficiency both at low and high soil P levels. In all the rice varieties, internal P efficiency decreased with an increase in soil P levels

    Spin-orbit coupling and crystal-field splitting in the electronic and optical properties of nitride quantum dots with a wurtzite crystal structure

    Full text link
    We present an sp3sp^3 tight-binding model for the calculation of the electronic and optical properties of wurtzite semiconductor quantum dots (QDs). The tight-binding model takes into account strain, piezoelectricity, spin-orbit coupling and crystal-field splitting. Excitonic absorption spectra are calculated using the configuration interaction scheme. We study the electronic and optical properties of InN/GaN QDs and their dependence on structural properties, crystal-field splitting, and spin-orbit coupling.Comment: 9 pages, 6 figure

    On the fluid-fluid phase separation in charged-stabilized colloidal suspensions

    Full text link
    We develop a thermodynamic description of particles held at a fixed surface potential. This system is of particular interest in view of the continuing controversy over the possibility of a fluid-fluid phase separation in aqueous colloidal suspensions with monovalent counterions. The condition of fixed surface potential allows in a natural way to account for the colloidal charge renormalization. In a first approach, we assess the importance of the so called ``volume terms'', and find that in the absence of salt, charge renormalization is sufficient to stabilize suspension against a fluid-fluid phase separation. Presence of salt, on the other hand, is found to lead to an instability. A very strong dependence on the approximations used, however, puts the reality of this phase transition in a serious doubt. To further understand the nature of the instability we next study a Jellium-like approximation, which does not lead to a phase separation and produces a relatively accurate analytical equation of state for a deionized suspensions of highly charged colloidal spheres. A critical analysis of various theories of strongly asymmetric electrolytes is presented to asses their reliability as compared to the Monte Carlo simulations

    Evidence of balanced diversity at the chicken interleukin 4 receptor alpha chain locus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The comparative analysis of genome sequences emerging for several avian species with the fully sequenced chicken genome enables the genome-wide investigation of selective processes in functionally important chicken genes. In particular, because of pathogenic challenges it is expected that genes involved in the chicken immune system are subject to particularly strong adaptive pressure. Signatures of selection detected by inter-species comparison may then be investigated at the population level in global chicken populations to highlight potentially relevant functional polymorphisms.</p> <p>Results</p> <p>Comparative evolutionary analysis of chicken (<it>Gallus gallus</it>) and zebra finch (<it>Taeniopygia guttata</it>) genes identified interleukin 4 receptor alpha-chain (IL-4Rα), a key cytokine receptor as a candidate with a significant excess of substitutions at nonsynonymous sites, suggestive of adaptive evolution. Resequencing and detailed population genetic analysis of this gene in diverse village chickens from Asia and Africa, commercial broilers, and in outgroup species red jungle fowl (JF), grey JF, Ceylon JF, green JF, grey francolin and bamboo partridge, suggested elevated and balanced diversity across all populations at this gene, acting to preserve different high-frequency alleles at two nonsynonymous sites.</p> <p>Conclusion</p> <p>Haplotype networks indicate that red JF is the primary contributor of diversity at chicken IL-4Rα: the signature of variation observed here may be due to the effects of domestication, admixture and introgression, which produce high diversity. However, this gene is a key cytokine-binding receptor in the immune system, so balancing selection related to the host response to pathogens cannot be excluded.</p
    corecore