64 research outputs found

    Resistance of a Rodent Malaria Parasite to a Thymidylate Synthase Inhibitor Induces an Apoptotic Parasite Death and Imposes a Huge Cost of Fitness

    Get PDF
    BACKGROUND: The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. METHODOLOGY/PRINCIPAL FINDINGS: To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. CONCLUSIONS/SIGNIFICANCE: The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may be exploited as a novel drug target in malaria and other protozoan diseases of medical importance

    Evaluation of Leishmania donovani Protein Disulfide Isomerase as a Potential Immunogenic Protein/Vaccine Candidate against Visceral Leishmaniasis

    Get PDF
    In Leishmania species, Protein disulfide isomerase (PDI) - a redox chaperone, is reported to be involved in its virulence and survival. This protein has also been identified, through proteomics, as a Th1 stimulatory protein in the soluble lysate of a clinical isolate of Leishmania donovani (LdPDI). In the present study, the molecular characterization of LdPDI was carried out and the immunogenicity of recombinant LdPDI (rLdPDI) was assessed by lymphocyte proliferation assay (LTT), nitric oxide (NO) production, estimation of Th1 cytokines (IFN-γ and IL-12) as well as IL-10 in PBMCs of cured/endemic/infected Leishmania patients and cured L. donovani infected hamsters. A significantly higher proliferative response against rLdPDI as well as elevated levels of IFN-γ and IL-12 were observed. The level of IL-10 was found to be highly down regulated in response to rLdPDI. A significant increase in the level of NO production in stimulated hamster macrophages as well as IgG2 antibody and a low level of IgG1 in cured patient's serum was observed. Higher level of IgG2 antibody indicated its Th1 stimulatory potential. The efficacy of pcDNA-LdPDI construct was further evaluated for its prophylactic potential. Vaccination with this construct conferred remarkably good prophylactic efficacy (∼90%) and generated a robust cellular immune response with significant increases in the levels of iNOS transcript as well as TNF-α, IFN-γ and IL-12 cytokines. This was further supported by the high level of IgG2 antibody in vaccinated animals. The in vitro as well as in vivo results thus indicate that LdPDI may be exploited as a potential vaccine candidate against visceral Leishmaniasis (VL)

    Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis

    Full text link
    All rights reserved. Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control, for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses, however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniquesThis work was supported by grants from Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Rede Nanobiotec/Brasil-Universidade Federal de Uberlândia/CAPES, PRONEX-FAPEMIG (APQ-01019-09), FAPEMIG (CBB-APQ-00819-12 and CBB-APQ-01778-2014), and CNPq (APQ-482976/2012-8, APQ-488237/2013-0, and APQ-467640/2014-9). EAFC and LRG are recipients of the grant from CNPq. MACF is the recipient of grants from FAPEMIG/CAPE

    HER-2 overexpression differentially alters transforming growth factor-β responses in luminal versus mesenchymal human breast cancer cells

    Get PDF
    INTRODUCTION: Amplification of the HER-2 receptor tyrosine kinase has been implicated in the pathogenesis and aggressive behavior of approximately 25% of invasive human breast cancers. Clinical and experimental evidence suggest that aberrant HER-2 signaling contributes to tumor initiation and disease progression. Transforming growth factor beta (TGF-β) is the dominant factor opposing growth stimulatory factors and early oncogene activation in many tissues, including the mammary gland. Thus, to better understand the mechanisms by which HER-2 overexpression promotes the early stages of breast cancer, we directly assayed the cellular and molecular effects of TGF-β1 on breast cancer cells in the presence or absence of overexpressed HER-2. METHODS: Cell proliferation assays were used to determine the effect of TGF-β on the growth of breast cancer cells with normal or high level expression of HER-2. Affymetrix microarrays combined with Northern and western blot analysis were used to monitor the transcriptional responses to exogenous TGF-β1 in luminal and mesenchymal-like breast cancer cells. The activity of the core TGF-β signaling pathway was assessed using TGF-β1 binding assays, phospho-specific Smad antibodies, immunofluorescent staining of Smad and Smad DNA binding assays. RESULTS: We demonstrate that cells engineered to over-express HER-2 are resistant to the anti-proliferative effect of TGF-β1. HER-2 overexpression profoundly diminishes the transcriptional responses induced by TGF-β in the luminal MCF-7 breast cancer cell line and prevents target gene induction by a novel mechanism that does not involve the abrogation of Smad nuclear accumulation, DNA binding or changes in c-myc repression. Conversely, HER-2 overexpression in the context of the mesenchymal MDA-MB-231 breast cell line potentiated the TGF-β induced pro-invasive and pro-metastatic gene signature. CONCLUSION: HER-2 overexpression promotes the growth and malignancy of mammary epithelial cells, in part, by conferring resistance to the growth inhibitory effects of TGF-β. In contrast, HER-2 and TGF-β signaling pathways can cooperate to promote especially aggressive disease behavior in the context of a highly invasive breast tumor model

    Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    Get PDF
    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed

    An enigma in the genetic responses of plants to salt stresses

    Get PDF
    Soil salinity is one of the main factors restricting crop production throughout the world. Various salt tolerance traits and the genes controlling these traits are responsible for coping with salinity stress in plants. These coping mechanisms include osmotic tolerance, ion exclusion, and tissue tolerance. Plants exposed to salinity stress sense the stress conditions, convey specific stimuli signals, and initiate responses against stress through the activation of tolerance mechanisms that include multiple genes and pathways. Advances in our understanding of the genetic responses of plants to salinity and their connections with yield improvement are essential for attaining sustainable agriculture. Although a wide range of studies have been conducted that demonstrate genetic variations in response to salinity stress, numerous questions need to be answered to fully understand plant tolerance to salt stress. This chapter provides an overview of previous studies on the genetic control of salinity stress in plants, including signaling, tolerance mechanisms, and the genes, pathways, and epigenetic regulators necessary for plant salinity tolerance

    <i style="mso-bidi-font-style:normal">Chironji</i> nut (<i style="mso-bidi-font-style:normal">Buchanania lanzan)</i> processing, present practices and scope<span style="mso-bidi-font-family:Arial" lang="EN-GB"> </span>

    No full text
    202-204Buchanania lanzan (Chironji) is a tree species which belongs to the family Anacardiaceae and is commercially very useful. The fruit of chironji contains a hard nut that on decortication yields kernel containing about 52% oil. The kernel oil is used mostly in the cosmetic manufacturing and as a substitute for olive and almond oil while the whole kernel is used in sweet-meals as a substitute for almond kernel. Although, the chironji nuts and kernels have been used extensively but there is no machinery for processing of <i style="mso-bidi-font-style: normal">chironji nut. At present shelling of <i style="mso-bidi-font-style: normal">chironji nut is done manually and some time by locally made machine. This traditional process involves soaking in the water for 24 hrs, skin removal by hand rubbing followed by drying. Dried nut is broken by rubbing between a pair of stone-slab or hammer followed by separation of kernel from the hull. In some areas local artesian developed motorized machines for breaking and separating, but the machines were not specifically designed. So they are again manually separating. Therefore there is need for developing the machinery for chironji decorticating

    Not Available

    No full text
    Not AvailableThe present study was conducted to identify and characterize the etiological agent causing mortality in Indian Major Carp, Rohu (Labeo rohita) in West Bengal, India. Diseased fish samples having hemorrhages near the tail and intraperitonial region was collected from culture ponds of Burdwan, West Bengal for the isolation of the pathogenic bacteria. Primarily the bacterium was characterized using biochemical and antibiogram studies. The 16S rRNA gene sequence of the isolated bacteria revealed that the isolate was having 100% homology with Klebsiella pneumoniae (NCBI Accession Number- KY003130). Intraperitoneal injection with 1.05 × 106 CFU per fish causes 50% mortality. The challenged fish showed hemorrhages in the intraperitonial region. The histopathology of the challenged fish liver showed vacuolation, necrosis and disruption of hepatocytes. However, focal necrosis and vacuolation was observed in kidney tissue. This study highlights the first time involvement of Klebsiella pneumoniae in the disease outbreak of cultured Labeo rohita. Understanding the pathology and pathogenesis studies of this emerging pathogen in cultured carps would help in control of this disease in aquaculture.Not Availabl
    corecore