228 research outputs found

    Design and Performance of INMAS Whole Body Counter

    Get PDF
    A whole-body counter has been commissioned at INMAS for radiation protection and clinical applications including body potassium estimations. It has 4-crystal bed geometry inside a shielded enclosure. The background index of the system (counts) per minute per cc detector volume in the energy band 0.1-2 me V is about 0.6 comparing favorably with other whole-body monitors in the world. The sensitivity is 0.5 cpm per gram of K. Body potassium can be estimated can be estimated correct to 10 g for one hour counting. The variation in detector response to a point source on the mid-line of the bed is + - 10% of the mean over a length of 170 cm. The usefulness of the large dimensions of the enclosure chosen is discussed

    Single Cell Deposition and Patterning with a Robotic System

    Get PDF
    Integrating single-cell manipulation techniques in traditional and emerging biological culture systems is challenging. Microfabricated devices for single cell studies in particular often require cells to be spatially positioned at specific culture sites on the device surface. This paper presents a robotic micromanipulation system for pick-and-place positioning of single cells. By integrating computer vision and motion control algorithms, the system visually tracks a cell in real time and controls multiple positioning devices simultaneously to accurately pick up a single cell, transfer it to a desired substrate, and deposit it at a specified location. A traditional glass micropipette is used, and whole- and partial-cell aspiration techniques are investigated to manipulate single cells. Partially aspirating cells resulted in an operation speed of 15 seconds per cell and a 95% success rate. In contrast, the whole-cell aspiration method required 30 seconds per cell and achieved a success rate of 80%. The broad applicability of this robotic manipulation technique is demonstrated using multiple cell types on traditional substrates and on open-top microfabricated devices, without requiring modifications to device designs. Furthermore, we used this serial deposition process in conjunction with an established parallel cell manipulation technique to improve the efficiency of single cell capture from ∼80% to 100%. Using a robotic micromanipulation system to position single cells on a substrate is demonstrated as an effective stand-alone or bolstering technology for single-cell studies, eliminating some of the drawbacks associated with standard single-cell handling and manipulation techniques

    Bak Conformational Changes Induced by Ligand Binding: Insight into BH3 Domain Binding and Bak Homo-Oligomerization

    Get PDF
    Recently we reported that the BH3-only proteins Bim and Noxa bind tightly but transiently to the BH3-binding groove of Bak to initiate Bak homo-oligomerization. However, it is unclear how such tight binding can induce Bak homo-oligomerization. Here we report the ligand-induced Bak conformational changes observed in 3D models of Noxa·Bak and Bim·Bak refined by molecular dynamics simulations. In particular, upon binding to the BH3-binding groove, Bim and Noxa induce a large conformational change of the loop between helices 1 and 2 and in turn partially expose a remote groove between helices 1 and 6 in Bak. These observations, coupled with the reported experimental data, suggest formation of a pore-forming Bak octamer, in which the BH3-binding groove is at the interface on one side of each monomer and the groove between helices 1 and 6 is at the interface on the opposite side, initiated by ligand binding to the BH3-binding groove

    Team players against headache: multidisciplinary treatment of primary headaches and medication overuse headache

    Get PDF
    Multidisciplinary approaches are gaining acceptance in headache treatment. However, there is a lack of scientific data about the efficacy of various strategies and their combinations offered by physiotherapists, physicians, psychologists and headache nurses. Therefore, an international platform for more intense collaboration between these professions and between headache centers is needed. Our aims were to establish closer collaboration and an interchange of knowledge between headache care providers and different disciplines. A scientific session focusing on multidisciplinary headache management was organised at The European Headache and Migraine Trust International Congress (EHMTIC) 2010 in Nice. A summary of the contributions and the discussion is presented. It was concluded that effective multidisciplinary headache treatment can reduce headache frequency and burden of disease, as well as the risk for medication overuse headache. The significant value of physiotherapy, education in headache schools, and implementation of strategies of cognitive behavioural therapy was highlighted and the way paved for future studies and international collaboration

    Elucidating the clinical and molecular spectrum of SMARCC2-associated NDD in a cohort of 65 affected individuals

    Get PDF
    Purpose: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. Methods: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. Results: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. Conclusion: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated

    Clinical impact of additional findings detected by genome-wide non-invasive prenatal testing:Follow-up results of the TRIDENT-2 study

    Get PDF
    In the TRIDENT-2 study, all pregnant women in the Netherlands are offered genome-wide non-invasive prenatal testing (GW-NIPT) with a choice of receiving either full screening or screening solely for common trisomies. Previous data showed that GW-NIPT can reliably detect common trisomies in the general obstetric population and that this test can also detect other chromosomal abnormalities (additional findings). However, evidence regarding the clinical impact of screening for additional findings is lacking. Therefore, we present follow-up results of the TRIDENT-2 study to determine this clinical impact based on the laboratory and perinatal outcomes of cases with additional findings. Between April 2017 and April 2019, additional findings were detected in 402/110,739 pregnancies (0.36%). For 358 cases, the origin was proven to be either fetal (n = 79; 22.1%), (assumed) confined placental mosaicism (CPM) (n = 189; 52.8%), or maternal (n = 90; 25.1%). For the remaining 44 (10.9%), the origin of the aberration could not be determined. Most fetal chromosomal aberrations were pathogenic and associated with severe clinical phenotypes (61/79; 77.2%). For CPM cases, occurrence of pre-eclampsia (8.5% [16/189] vs 0.5% [754/159,924]; RR 18.5), and birth weigh

    Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    Get PDF
    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.X-ray photoelectron spectra were obtained at the National Engineering and Physical Sciences Research Council (EPSRC) XPS User’s Service (NEXUS) at Newcastle University, an EPSRC midrange facility. NR data were obtained on the D17 instrument, and samples were treated in the laboratories of the Partnership for Soft Condensed Matter (PSCM) at the Institut Laue-Langevin. M.H.W. is grateful for funding from the Oppenheimer Trust.This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/acs.langmuir.5b0171
    corecore