34 research outputs found

    One thousand days of SN 2015bn: HST imaging shows a light curve flattening consistent with magnetar predictions

    Full text link
    We present the first observations of a Type I superluminous supernova (SLSN) at ≳1000\gtrsim 1000 days after maximum light. We observed SN 2015bn using the Hubble Space Telescope Advanced Camera for Surveys in the F475W, F625W and F775W filters at 721 days and 1068 days. SN 2015bn is clearly detected and resolved from its compact host, allowing reliable photometry. A galaxy template constructed from these data further enables us to isolate the SLSN flux in deep ground-based imaging. We measure a light curve decline rate at >700>700 days of 0.19±0.030.19 \pm 0.03 mag (100 d)−1^{-1}, much shallower than the earlier evolution, and slower than previous SLSNe (at any phase) or the decay rate of 56^{56}Co. Neither additional radioactive isotopes nor a light echo can consistently account for the slow decline. A spectrum at 1083 days shows the same [O I] and [Ca II] lines as seen at ∌300−400\sim300-400 days, with no new features to indicate strong circumstellar interaction. Radio limits with the Very Large Array rule out an extended wind for mass-loss rates 10−2.7â‰ČM˙/v10â‰Č10−1.110^{-2.7} \lesssim \dot{M}/v_{10} \lesssim 10^{-1.1} M⊙_\odot yr−1^{-1} (where v10v_{10} is the wind velocity in units of 10 km s−1^{-1}). The optical light curve is consistent with L∝t−4L \propto t^{-4}, which we show is expected for magnetar spin-down with inefficient trapping; furthermore, the evolution matches predictions from earlier magnetar model fits. The opacity to magnetar radiation is constrained at ∌0.01\sim 0.01 cm2^2 g−1^{-1}, consistent with photon-matter pair-production over a broad ∌\simGeV-TeV range. This suggests the magnetar spectral energy distribution, and hence the 'missing energy' leaking from the ejecta, may peak in this range.Comment: Accepted for publication in ApJL, updated to match accepted versio

    The Type I Superluminous Supernova PS16aqv: Lightcurve Complexity and Deep Limits on Radioactive Ejecta in a Fast Event

    Full text link
    [Abridged] We present UV/optical observations of PS16aqv (SN 2016ard), a Type I superluminous supernova (SLSN-I) classified as part of our search for low-zz SLSNe. PS16aqv is a fast evolving SLSNe-I that reached a peak absolute magnitude of Mr≈−22.1M_{r} \approx -22.1. The lightcurves exhibit a significant undulation at 30 rest-frame days after peak, with a behavior similar to undulations seen in the slowly fading SLSN-I SN 2015bn. This similarity strengthens the case that fast and slow SLSNe-I form a continuum with a common origin. At ≈ ⁣80\approx\!80 days after peak, the lightcurves exhibit a transition to a slow decline, followed by significant subsequent steepening, indicative of a plateau phase or a second significant undulation. Deep limits at ≈280\approx280 days after peak imply a tight constraint on the nickel mass, MNiâ‰Č0.35M_{\rm Ni} \lesssim 0.35 M⊙_{\odot} (lower than for previous SLSNe-I), and indicate that some SLSNe-I do not produce significantly more nickel than normal Type Ic SNe. Using MOSFiT, we model the lightcurve with a magnetar central engine model and find Pspin≈0.9P_{\rm spin} \approx 0.9 ms, B≈1.5×1014B \approx 1.5 \times 10^{14} G, and Mej≈16M_{\rm ej} \approx 16 M⊙_{\odot}. The implied rapid spin-down time and large reservoir of available energy coupled with the high ejecta mass may account for the fast evolving lightcurve and slow spectroscopic evolution. We also study the location of PS16aqv in its host galaxy and find that it occurred at an offset of 2.46±0.212.46 \pm 0.21 kpc from the central star-forming region. We find the host galaxy exhibits low metallicity and spatially varying extinction and star formation rate, with the explosion site exhibiting lower values than the central region. The complexity seen in the lightcurves of PS16aqv and other events highlights the importance of obtaining well-sampled lightcurves for exploring deviations from a uniform decline.Comment: 16 pages, 10 figures, submitted to Ap

    The first JWST spectrum of a GRB afterglow: No bright supernova in observations of the brightest GRB of all time, GRB 221009A

    Full text link
    We present JWST and Hubble Space Telescope (HST) observations of the afterglow of GRB\,221009A, the brightest gamma-ray burst (GRB) ever observed. Observations obtained with NIRSPEC (0.6-5.5 micron) and MIRI (5-12 micron) 12 days after the burst are the first mid-IR spectroscopy performed for a GRB. Assuming the underlying slope is that of a single power-law, we obtain ÎČ≈0.35\beta \approx 0.35 and AV=4.9A_V = 4.9, in excess of the notional Galactic value. This is suggestive of extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same branch of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal declines would only match for a post jet break, ISM medium and electron index with p<2p<2. The shape of the JWST spectrum is near-identical in the optical/nIR to X-shooter spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests the SNe is either substantially fainter or bluer than SN~1998bw. Our {\em HST} observations also reveal a disc-like host galaxy, viewed close to edge-on that further complicates the isolation of any supernova component. The host galaxy appears rather typical amongst long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment.Comment: Submitted to the Astrophysical Journal Letters for the GRB 221009A Special Issue. The results of this paper are under press embargo. 18 pages, 8 figures, 2 table

    Panning for gold, but finding helium: discovery of the ultra-stripped supernova SN2019wxt from gravitational-wave follow-up observations

    Full text link
    We present the results from multi-wavelength observations of a transient discovered during the follow-up of S191213g, a gravitational wave (GW) event reported by the LIGO-Virgo Collaboration as a possible binary neutron star merger in a low latency search. This search yielded SN2019wxt, a young transient in a galaxy whose sky position (in the 80\% GW contour) and distance (∌\sim150\,Mpc) were plausibly compatible with the localisation uncertainty of the GW event. Initially, the transient's tightly constrained age, its relatively faint peak magnitude (Mi∌−16.7M_i \sim -16.7\,mag) and the r−r-band decline rate of ∌1\sim 1\,mag per 5\,days appeared suggestive of a compact binary merger. However, SN2019wxt spectroscopically resembled a type Ib supernova, and analysis of the optical-near-infrared evolution rapidly led to the conclusion that while it could not be associated with S191213g, it nevertheless represented an extreme outcome of stellar evolution. By modelling the light curve, we estimated an ejecta mass of ∌0.1 M⊙\sim 0.1\,M_\odot, with 56^{56}Ni comprising ∌20%\sim 20\% of this. We were broadly able to reproduce its spectral evolution with a composition dominated by helium and oxygen, with trace amounts of calcium. We considered various progenitors that could give rise to the observed properties of SN2019wxt, and concluded that an ultra-stripped origin in a binary system is the most likely explanation. Disentangling electromagnetic counterparts to GW events from transients such as SN2019wxt is challenging: in a bid to characterise the level of contamination, we estimated the rate of events with properties comparable to those of SN2019wxt and found that ∌1\sim 1 such event per week can occur within the typical GW localisation area of O4 alerts out to a luminosity distance of 500\,Mpc, beyond which it would become fainter than the typical depth of current electromagnetic follow-up campaigns.Comment: By the ENGRAVE collaboration (engrave-eso.org). 35 pages, 20 figures, final version accepted by A&

    A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy

    Get PDF
    The majority of long-duration (>2 s) gamma-ray bursts (GRBs) arise from the collapse of massive stars, with a small proportion created from the merger of compact objects. Most of these systems form via standard stellar evolution pathways. However, a fraction of GRBs may result from dynamical interactions in dense environments. These channels could also contribute substantially to the samples of compact object mergers detected as gravitational wave sources. Here we report the case of GRB 191019A, a long GRB (a duration of T 90 = 64.4 ± 4.5 s), which we pinpoint close (âȘ…100 pc projected) to the nucleus of an ancient (>1 Gyr old) host galaxy at z = 0.248. The lack of evidence for star formation and deep limits on any supernova emission disfavour a massive star origin. The most likely route for progenitor formation is via dynamical interactions in the dense nucleus of the host. The progenitor, in this case, could be a compact object merger. These may form in dense nuclear clusters or originate in a gaseous disc around the supermassive black hole. Identifying, to the best of our knowledge, a first example of a dynamically produced GRB demonstrates the role that such bursts may have in probing dense environments and constraining dynamical fractions in gravitational wave populations

    Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv

    Get PDF
    corecore