445 research outputs found

    The role of technology in maritime security : a survey of its development, application, and adequacy

    Get PDF

    Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    Get PDF
    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel. The fundamental research in multiphase flow and phase change in microgravity is aimed at developing better mechanistic understanding of pool boiling and ascertaining the effects of gravity on heat transfer and the critical heat flux. Space flight experiments conducted in space have shown that nucleate pool boiling can be sustained under certain conditions in the microgravity environment. New space flight experiments are being developed to provide more quantitative information on pool boiling in microgravity. Ground-based investigations are also being conducted to develop mechanistic models for flow and pool boiling. An overview of the research plan and roadmap for the strategic research in multiphase flow and phase change as well as research findings from the ongoing program will be presented

    Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Get PDF
    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute

    A solid state controller for self-excited induction generator for voltage regulation, harmonic compensation and load balancing

    Get PDF
    This paper deals with the performance analysis of static compensator (STATCOM) based voltage regulator for self-excited induction generators (SEIGs) supplying balanced/unbalanced and linear/ non-linear loads. In practice, most of the loads are linear. But the presence of non-linear loads in some applications injects harmonics into the generating system. Because an SEIG is a weak isolated system, these harmonics have a great effect on its performance. Additionally, SEIG’s offer poor voltage regulation and require an adjustable reactive power source to maintain a constant terminal voltage under a varying load. A three-phase insulated gate bipolar transistor (IGBT) based current controlled voltage source inverter (CC-VSI) known as STATCOM is used for harmonic elimination. It also provides the required reactive power an SEIG needs to maintain a constant terminal voltage under varying loads. A dynamic model of an SEIG-STATCOM system with the ability to simulate varying loads has been developed using a stationary d-q axes reference frame. This enables us to predict the behavior of the system under transient conditions. The simulated results show that by using a STATCOM based voltage regulator the SEIG terminal voltage can be maintained constant and free from harmonics under linear/non linear and balanced/unbalanced loads

    Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    Get PDF
    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack

    Relationship between C:N/C:O stoichiometry and ecosystem services in managed production systems

    Get PDF
    Land use and management intensity can influence provision of ecosystem services (ES). We argue that forest/agroforestry production systems are characterized by relatively higher C:O/C:N and ES value compared to arable production systems. Field investigations on C:N/C:O and 15 ES were determined in three diverse production systems: wheat monoculture (Cwheat), a combined food and energy system (CFE) and a beech forest in Denmark. The C:N/C:O ratios were 194.1/1.68, 94.1/1.57 and 59.5/1.45 for beech forest, CFE and Cwheat, respectively. The economic value of the non-marketed ES was also highest in beech forest (US1089ha(−1)yr(−1))followedbyCFE(US 1089 ha(-1) yr(-1)) followed by CFE (US 800 ha(-1) yr(-1)) and Cwheat (US339ha(−1)yr(−1)).ThecombinedeconomicvaluewashighestintheCFE(US 339 ha(-1) yr(-1)). The combined economic value was highest in the CFE (US 3143 ha(-1) yr(-1)) as compared to the Cwheat (US2767ha(−1)yr(−1))andbeechforest(US 2767 ha(-1) yr(-1)) and beech forest (US 2365 ha(-1) yr(-1)). We argue that C:N/C:O can be used as a proxy of ES, particularly for the non-marketed ES, such as regulating, supporting and cultural services. These ES play a vital role in the sustainable production of food and energy. Therefore, they should be considered in decision making and developing appropriate policy responses for land use management

    The NASA Microgravity Fluid Physics Program: Research Plans for the ISS

    Get PDF
    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. NASA's Biological and Physical Research Enterprise seeks to exploit the space environment to conduct research supporting human exploration of space (strategic research), research of intrinsic scientific importance and impact (fundamental research), and commercial research. The strategic research thrust will build the vital knowledge base needed to enable NASA's mission to explore the Universe and search for life. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, niultiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA- sponsored flight experiments in microgravity fluid physics and transport phenomena will be carried out on the International Space Station (ISS) in the Fluids Integrated Rack (FIR), in the Microgravity Science Glovebox (MSG), in EXPRESS racks, and in other facilities provided by international partners. This paper presents an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to enable this research

    Further observations on the diamagnetism of the trivalent bismuth ion

    Get PDF
    This article does not have an abstract

    Use of growth regulators as priming agent for improvement of seed vigour in tomato (Lycopersicum esculentum)

    Get PDF
    Seeds of tomato cv. Keabi were primed with of three important growth regulators viz Gibberellic acid (GA3), Napthlene acetic acid (NAA) and potassium nitrate (KNO3). Four concentration of each, Gibberellic acid and Napthlene acitic acid (25ppm, 50ppm, 75ppm.100ppm) and two concentration of KNO3 (1% and 2%) were compared with the distilled water as control. For each treatment seeds were soaked in growth regulator for 24 hrs before put for the germination test. Fifty seeds in four replications were germinated on top of paper at 200C in seed germinator for 14 days. Normally germinated seedlings were counted which gave an estimation of germination percentage. Data was recorded on the germination percentage, shoot length, seed vigour index. Most of the treatments had significant positive effect on all the quality parameters. NAA had showed adverse effect on the root length while other growth regulators were found to be significant role to improve the root length. Maximum seed germination (74%) was observed at 50 and 75ppm GA3. Highest shoot length (4.83cm) was found at 25ppm of GA3 whereas enhancement of root length occurred with the priming of 1% KNO3 (3.52cm ). Seed vigour-I, on the basis of seedling length was observed higher at 25ppm. GA3 (720) and seed vigour –II on the basis of seedling dry weight was also observed maximum priming with 100ppm GA3 (1460). From this study it was suggested that GA3 priming has important growth regulator to enhance the seed germination as well as seed vigour. Before sowing seed should be priming with GA3 for obtaining high % germination and vigorous seedling that survive under adverse condition it also increase the uniformity of field plant stand
    • …
    corecore