19 research outputs found

    Warfarin-related nephropathy occurs in patients with and without chronic kidney disease and is associated with an increased mortality rate

    Get PDF
    An acute increase in the international normalized ratio (INR; a comparison of prothrombin time to monitor the effects of warfarin) over 3 in patients with chronic kidney disease (CKD) is often associated with an unexplained acute increase in serum creatinine (SC) and an accelerated progression of CKD. Kidney biopsy in a subset of these patients showed obstruction of the renal tubule by red blood cell casts, and this appears to be the dominant mechanism of the acute kidney injury. We termed this warfarin-related nephropathy (WRN), and previously reported cases of WRN only in patients with CKD. We now assess whether this occurs in patients without CKD, its risk factors, and consequences. In 15,258 patients who initiated warfarin therapy during a 5-year period, 4006 had an INR over 3 and SC measured at the same time; however, the large data set precluded individual patient clinical assessment. A presumptive diagnosis of WRN was made if the SC increased by over 0.3mg/dl within 1 week after the INR exceeded 3 with no record of hemorrhage. WRN occurred in 20.5% of the entire cohort, 33.0% of the CKD cohort, and 16.5% of the no-CKD cohort. Other risk factors included age, diabetes mellitus, hypertension, and cardiovascular disease. The 1-year mortality was 31.1% with compared with 18.9% without WRN, an increased risk of 65%. Thus, WRN may be a common complication of warfarin therapy in high-risk patients and CKD doubles this risk. The mechanisms of these risks are unclear

    The Benefits of Intensive Versus Standard Blood Pressure Treatment According to Fine Particulate Matter Air Pollution Exposure A Post Hoc Analysis of SPRINT

    No full text
    Fine particulate matter <2.5 µm (PM 2.5 ) air pollution is implicated in global mortality, especially from cardiovascular causes. A large body of evidence suggests a link between PM 2.5 and elevation in blood pressure (BP), with the latter implicated as a potential mediator of cardiovascular events. We sought to determine if the outcomes of intensive BP lowering (systolic BP <120 mm Hg) on cardiovascular events are modified by PM 2.5 exposure in the SPRINT (Systolic BP Intervention Trial). We linked annual PM 2.5 exposure estimates derived from an integrated model to subjects participating in SPRINT. We evaluated the effect of intensive BP lowering by PM 2.5 exposure on the primary outcome in SPRINT using cox-proportional hazard models. A total of 9286 participants were linked to PM 2.5 levels (mean age 68±9 years). Intensive BP-lowering decreased risk of the primary outcome more among patients exposed to higher PM 2.5 ( P interaction =0.047). The estimate for lowering of primary outcome was numerically lower in the highest than in the lower quintiles. The benefits of intensive BP-lowering were larger among patients chronically exposed to PM 2.5 levels above US National Ambient Air Quality Standards of 12 µg/m 3 (hazard ratio, 0.47 [95% CI, 0.29–0.74]) compared with those living in cleaner locations (hazard ratio, 0.81 [95% CI, 0.68–0.97]), P interaction =0.037. This exploratory nonprespecified post hoc analysis of SPRINT suggests that the benefits of intensive BP lowering on the primary outcome was greater in patients exposed to higher PM 2.5 , suggesting that the magnitude of benefit may depend upon the magnitude of antecedent PM 2.5 exposure
    corecore