98 research outputs found

    Lattice Boltzmann simulations of lamellar and droplet phases

    Full text link
    Lattice Boltzmann simulations are used to investigate spinodal decomposition in a two-dimensional binary fluid with equilibrium lamellar and droplet phases. We emphasise the importance of hydrodynamic flow to the phase separation kinetics. For mixtures slightly asymmetric in composition the fluid phase separates into bulk and lamellar phases with the lamellae forming distinctive spiral structures to minimise their elastic energy.Comment: 19 pages, 5 figure

    Uncertainty in Knowledge Provenance

    Full text link
    osed to address the problem about how to he validity and origin of information/knowledge on the web by rces and dependencies as oduced: Static, Dynamic, Uncertain, and Judgmental. In order to give a formal and explicit specification ncepts of KP, a static KP ontology is defined in this 1. telecommunication technologies that make owledge/information validity becomes a crucial ny des mo s and dependencies, as well as trust stru nswer include: Can this information be ts creator be trusted? What does it dep to be true? This proposed app to determine the val ncertain an

    A decade of letrozole: FACE

    Get PDF
    Third-generation nonsteroidal aromatase inhibitors (AIs), letrozole and anastrozole, are superior to tamoxifen as initial therapy for early breast cancer but have not been directly compared in a head-to-head adjuvant trial. Cumulative evidence suggests that AIs are not equivalent in terms of potency of estrogen suppression and that there may be differences in clinical efficacy. Thus, with no data from head-to-head comparisons of the AIs as adjuvant therapy yet available, the question of whether there are efficacy differences between the AIs remains. To help answer this question, the Femara versus Anastrozole Clinical Evaluation (FACE) is a phase IIIb open-label, randomized, multicenter trial designed to test whether letrozole or anastrozole has superior efficacy as adjuvant treatment of postmenopausal women with hormone receptor (HR)- and lymph node-positive breast cancer. Eligible patients (target accrual, N = 4,000) are randomized to receive either letrozole 2.5 mg or anastrozole 1 mg daily for up to 5 years. The primary objective is to compare disease-free survival at 5 years. Secondary end points include safety, overall survival, time to distant metastases, and time to contralateral breast cancer. The FACE trial will determine whether or not letrozole offers a greater clinical benefit to postmenopausal women with HR+ early breast cancer at increased risk of early recurrence compared with anastrozole

    Design, Performance and Calibration of the CMS Forward Calorimeter Wedges

    Get PDF
    We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\l |\eta| \le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/\sqrt{E} + b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%

    The burn wound exudate—An under-utilized resource

    Full text link
    INTRODUCTION: The burn wound exudate represents the burn tissue microenvironment. Extracting information from the exudate relating to cellular components, signaling mediators and protein content can provide much needed data relating to the local tissue damage, depth of the wound and probable systemic complications. This review examines the scientific data extracted from burn wound exudates over the years and proposes new investigations that will provide useful information from this underutilized resource. METHOD: A literature review was conducted using the electronic database PubMed to search for literature pertaining to burn wound or blister fluid analysis. Key words included burn exudate, blister fluid, wound exudate, cytokine burn fluid, subeschar fluid, cytokine burns, serum cytokines. 32 relevant article were examined and 29 selected as relevant to the review. 3 papers were discarded due to questionable methodology or conclusions. The reports were assessed for their affect on management decisions and diagnostics. Furthermore, traditional blood level analysis of these mediators was made to compare the accuracy of blood versus exudate in burn wound management. Extrapolations are made for new possibilities of burn wound exudate analysis. RESULTS: Studies pertaining to burn wound exudate, subeschar fluid and blister fluid analyses may have contributed to burn wound management decisions particularly related to escharectomies and early burn wound excision. In addition, information from these studies have the potential to impact on areas such as healing, scarring, burn wound conversion and burn wound depth analysis. CONCLUSION: Burn wound exudate analysis has proven useful in burn wound management decisions. It appears to offer a far more accurate reflection of the burn wound pathophysiology than the traditional blood/serum investigations undertaken in the past. New approaches to diagnostics and treatment efficacy assessment are possible utilizing data from this fluid. Burn wound exudate is a useful, currently under-utilized resource that is likely to take a more prominent role in burn wound management

    Investigation of open channel flow with unsubmerged rigid vegetation by the lattice Boltzmann method

    Get PDF
    YesAquatic vegetation can significantly affect flow structure, sediment transport, bed scour and water quality in rivers, lakes, reservoirs and open channels. In this study, the lattice Boltzmann method is applied for performing the two dimensional numerical simulation of the flow structure in a flume with rigid vegetation. A multi-relaxation time model is applied to improve the stability of the numerical scheme for flow with high Reynolds number. The vegetation induced drag force is added in lattice Boltzmann equation model with the algorithm of multi-relaxation time in order to improve the simulation accuracy,. Numerical simulations are performed for a wide range of flow and vegetation conditions and are validated by comparing with the laboratory experiments. Analysis of the simulated and experimentally measured flow field shows that the numerical simulation can satisfactorily reproduce the laboratory experiments, indicating that the proposed lattice Boltzmann model has high accuracy for simulating flow-vegetation interaction in open channel.National Natural Science Foundation of China (grant number: 11861003 and 11761005
    • …
    corecore