9,567 research outputs found

    The non-coplanar baselines effect in radio interferometry: The W-Projection algorithm

    Full text link
    We consider a troublesome form of non-isoplanatism in synthesis radio telescopes: non-coplanar baselines. We present a novel interpretation of the non-coplanar baselines effect as being due to differential Fresnel diffraction in the neighborhood of the array antennas. We have developed a new algorithm to deal with this effect. Our new algorithm, which we call "W-projection", has markedly superior performance compared to existing algorithms. At roughly equivalent levels of accuracy, W-projection can be up to an order of magnitude faster than the corresponding facet-based algorithms. Furthermore, the precision of result is not tightly coupled to computing time. W-projection has important consequences for the design and operation of the new generation of radio telescopes operating at centimeter and longer wavelengths.Comment: Accepted for publication in "IEEE Journal of Selected Topics in Signal Processing

    Advances in Calibration and Imaging Techniques in Radio Interferometry

    Full text link
    This paper summarizes some of the major calibration and image reconstruction techniques used in radio interferometry and describes them in a common mathematical framework. The use of this framework has a number of benefits, ranging from clarification of the fundamentals, use of standard numerical optimization techniques, and generalization or specialization to new algorithms

    Learning to Reconstruct People in Clothing from a Single RGB Camera

    No full text
    We present a learning-based model to infer the personalized 3D shape of people from a few frames (1-8) of a monocular video in which the person is moving, in less than 10 seconds with a reconstruction accuracy of 5mm. Our model learns to predict the parameters of a statistical body model and instance displacements that add clothing and hair to the shape. The model achieves fast and accurate predictions based on two key design choices. First, by predicting shape in a canonical T-pose space, the network learns to encode the images of the person into pose-invariant latent codes, where the information is fused. Second, based on the observation that feed-forward predictions are fast but do not always align with the input images, we predict using both, bottom-up and top-down streams (one per view) allowing information to flow in both directions. Learning relies only on synthetic 3D data. Once learned, the model can take a variable number of frames as input, and is able to reconstruct shapes even from a single image with an accuracy of 6mm. Results on 3 different datasets demonstrate the efficacy and accuracy of our approach

    A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry

    Full text link
    Aims : We describe MS-MFS, a multi-scale multi-frequency deconvolution algorithm for wide-band synthesis-imaging, and present imaging results that illustrate the capabilities of the algorithm and the conditions under which it is feasible and gives accurate results. Methods : The MS-MFS algorithm models the wide-band sky-brightness distribution as a linear combination of spatial and spectral basis functions, and performs image-reconstruction by combining a linear-least-squares approach with iterative χ2\chi^2 minimization. This method extends and combines the ideas used in the MS-CLEAN and MF-CLEAN algorithms for multi-scale and multi-frequency deconvolution respectively, and can be used in conjunction with existing wide-field imaging algorithms. We also discuss a simpler hybrid of spectral-line and continuum imaging methods and point out situations where it may suffice. Results : We show via simulations and application to multi-frequency VLA data and wideband EVLA data, that it is possible to reconstruct both spatial and spectral structure of compact and extended emission at the continuum sensitivity level and at the angular resolution allowed by the highest sampled frequency.Comment: 17 pages, 11 figure

    Application of Physico-chemical Principles in Extraction Metallurgy

    Get PDF
    Physical chemistry has two important tools namely, thermo-dynamics which indicates the possibility of a reaction, and kinetics giving the rate at which a reaction proceeds. This paper indicates how these tools can profitably by utilized for the extraction of metals. The authors illus-trate as to how physical chemistry has been helpful in the clear understanding of the high-temperature reactions and in searching out new methods for metal-winning. A fer instances where thermo-dynamic data have been applied for developing scientific extraction methods are pointed out and their limitations indicated. The instances cited include the separation of nickel and zinc from a mixture of their oxides, the preparation of titanium tetraoxide and the development of Pidgeons process for the production of magnesium

    Vaccum - A New Tool in Extractive Metallurgy

    Get PDF
    Theoretical considerations involved in metal extraction reactions under vacuum have been discussed.The general advantages of carrying out reactions under vacuum are derived from the lowered temperature for reaction and the possibility of carrying reactions to completion, by the removal of one of the reaction products. The conditions for the reduction and dissociation of oxides, sulphides, halides, hydrides and nitrides are discussed and various examples cited of reactions of this type adopted for metal-winning

    Tooth-Support over Dentures: An approach to Preventive Prosthodontics

    Get PDF
    Over denture is a favoured treatment modality for elderly patients with few remaining teeth. Roots maintained under the denture base preserve the alveolar ridge, provide sensory feedback and improve the stability of the dentures. The concept of conventional tooth-retained over dentures is a simple and cost effective treatment than the implant over dentures. When few firm teeth are present in an otherwise compromised dentition, they can be retained and used as abutments for over denture fabrication. The concept of over dentures may not be the elixir, but it is a positive means for delaying the process of complete endentulism and helps in the preservation of bone. To top it all, it gives the patient the satisfaction of having prosthesis with his natural teeth still present. The present case reports discuss the rehabilitation of an edentulous patient with a tooth supported over denture with metal copings

    Enhanced Integrin α4β1-Mediated Adhesion Contributes to a Mobilization Defect of Endothelial Progenitor Cells in Diabetes.

    Get PDF
    Diabetes is associated with a deficit of circulating endothelial progenitor cells (EPCs), which has been attributed to their defective mobilization from the bone marrow. The basis for this mobilization defect is not completely understood, and we sought to determine if hyperglycemic conditions enhanced EPC adhesion. We found that culturing EPCs in high glucose media increased adhesion to bone marrow stromal cells. This enhanced adhesion was associated with decreased expression of protein kinase A regulatory subunit 1β (PRKAR1β), activation of protein kinase A (PKA), and phosphorylation of α4-integrin on serine 988. This potentiated adhesion was reversed by treatment with a PKA inhibitor, overexpression of PRKAR1β, or expression of a phosphorylation-defective α4-integrin variant (α4[S988A]). Using a model of type 1 diabetes, we showed that α4(S988A)-expressing mice have more circulating EPCs than their wild-type counterparts. Moreover, diabetic α4(S988A) mice demonstrate enhanced revascularization after hind limb ischemia. Thus, we have identified a novel signaling mechanism activating PKA in diabetes (downregulation of an inhibitory regulatory subunit) that leads to deficits of circulating EPCs and impaired vascular repair, which could be reversed by α4-integrin mutation
    • …
    corecore