79 research outputs found

    LpL_{p} inequalities for the growth of polynomials with restricted zeros

    Get PDF
    summary:Let P(z)=∑ν=0naνzνP(z)=\sum _{\nu =0}^{n}a_{\nu }z^{\nu } be a polynomial of degree at most nn which does not vanish in the disk ∣z∣1|z|1, Boas and Rahman proved ∥P(Rz)∥p≤(∥Rn+z∥p/∥1+z∥p)∥P∥p.\left\Vert P(Rz)\right\Vert _{p}\le \big (\left\Vert R^{n}+z\right\Vert_{p}/\left\Vert1+z\right\Vert_{p}\big )\left\Vert P\right\Vert _{p}. In this paper, we improve the above inequality for 0≤p10\le p 1 is also given

    Choledochal Cyst (CDC)

    Get PDF
    Choledochal cysts are congenital bile duct anomalies. These cystic dilatations of the biliary tree can involve the extrahepatic biliary radicles, the intrahepatic biliary radicles, or both. The etiology remains unknown, but choledochal cysts are likely to be congenital in nature. Cyst excision is the definitive treatment of choice for choledochal cyst because of the high morbidity and high risk of carcinoma after internal drainage, a commonly used treatment in the past. CDC is a congenital anomaly involving cystic dilatation of various ducts of biliary tree. The precise etiology of extrahepatic cysts continues to remain unclear. The most commonly accepted theory is an anomalous pancreatobiliary duct junction (APBDJ) and abnormal function of the sphincter of Oddi. Proper imaging plays an essential role in preoperative planning. Proper diagnosis evaluation and management is essential for optimal management. Type I cysts are the most frequently encountered. Choledochal cysts can have variable presentations. Hepatobiliary ultrasound and MRCP are the present day standards for imaging; early diagnosis should be the norm to avoid possible late complications of cholangitis, cirrhosis, hepaticolithiasis and spontaneous perforation. Excision of the cyst with hepaticojejunostomy is the best approach

    Participatory rural appraisal and farmers’ perception about common bean varieties in temperate Kashmir

    Get PDF
    Present investigation was undertaken during 2012 to 2014 in which 54 genotypes, both pole and bush type of Common beans (Phaseolus vulgaris) were selected among a number of germplasm lines, land races and research material in order to generate information on the farmer’s’ perception about the Common bean varieties. Participatory rural appraisal was conducted in 32 villages of Kashmir through a broad questionnaires comprising of questions pertaining to the socio-economic conditions, farming systems, production constraints and varietal preferences of the common bean. The Participatory Rural Appraisal results revealed that common bean is generally grown as a rainfed crop (70 %) and is intercropped with maize/ potato/vegetable and merely as sole crop (20.66 %). Low yielding varieties and diseases (68.27 %) are considered as major challenges in the success of common bean crop, while as red colour with kidney shaped types (50 %) are highly being preferred as a pulse crop. The exercise of Participatory Rural Appraisal was carried out to generate basic information by assessing the need based constraints and devise the target breeding approach, by taking into consideration all constraints and also devise future breeding programme. A successful PRA provides the information needed to specify the characteristic in a new variety regarding its physical environment and the existing varietal diversity. For a breeding program, well applied Participatory Rural Appraisal techniques or customer profiling results in better client orientation and makes possible efficient goal setting or product design. Successful PRA provides everything that could be included in the full design specification of a new crop variety

    Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management

    Get PDF
    Mobilization of unavailable phosphorus (P) to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid) environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max) -wheat (Triticum aestivum) crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, β-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings clearly indicate that owing to higher biological activity, organic systems possess equal capabilities of supplying P for crop growth as are conventional systems with inputs of mineral P fertilizers

    P66shc and its downstream Eps8 and Rac1 proteins are upregulated in esophageal cancers

    Get PDF
    Members of Shc (src homology and collagen homology) family, p46shc, p52shc, p66shc have known to be related to cell proliferation and carcinogenesis. Whereas p46shc and p52shc drive the reaction forward, the role of p66shc in cancers remains to be understood clearly. Hence, their expression in cancers needs to be evaluated carefully so that Shc analysis may provide prognostic information in the development of carcinogenesis. In the present study, the expression of p66shc and its associate targets namely Eps8 (epidermal pathway substrate 8), Rac1 (ras-related C3 botulinum toxin substrate1) and Grb2 (growth factor receptor bound protein 2) were examined in fresh tissue specimens from patients with esophageal squamous cell carcinoma and esophageal adenocarcinoma using western blot analysis. A thorough analysis of both esophageal squamous cell carcinoma and adenocarcinoma showed p66shc expression to be significantly higher in both types of carcinomas as compared to the controls. The controls of adenocarcinoma show a higher basal expression level of p66shc as compared to the controls of squamous cell carcinoma. The expression level of downstream targets of p66shc i.e., eps8 and rac1 was also found to be consistently higher in human esophageal carcinomas, and hence correlated positively with p66shc expression. However the expression of grb2 was found to be equal in both esophageal squamous cell carcinoma and adenocarcinoma. The above results suggest that the pathway operated by p66shc in cancers does not involve the participation of Ras and Grb2 as downstream targets instead it operates the pathway involving Eps8 and Rac1 proteins. From the results it is also suggestive that p66shc may have a role in the regulation of esophageal carcinomas and represents a possible mechanism of signaling for the development of squamous cell carcinoma and adenocarcinoma of esophagus

    Liquid Biopsy: A Step Closer to Transform Diagnosis, Prognosis and Future of Cancer Treatments

    Get PDF
    Over the past decade, invasive techniques for diagnosing and monitoring cancers are slowly being replaced by non-invasive methods such as liquid biopsy. Liquid biopsies have drastically revolutionized the field of clinical oncology, offering ease in tumor sampling, continuous monitoring by repeated sampling, devising personalized therapeutic regimens, and screening for therapeutic resistance. Liquid biopsies consist of isolating tumor-derived entities like circulating tumor cells, circulating tumor DNA, tumor extracellular vesicles, etc., present in the body fluids of patients with cancer, followed by an analysis of genomic and proteomic data contained within them. Methods for isolation and analysis of liquid biopsies have rapidly evolved over the past few years as described in the review, thus providing greater details about tumor characteristics such as tumor progression, tumor staging, heterogeneity, gene mutations, and clonal evolution, etc. Liquid biopsies from cancer patients have opened up newer avenues in detection and continuous monitoring, treatment based on precision medicine, and screening of markers for therapeutic resistance. Though the technology of liquid biopsies is still evolving, its non-invasive nature promises to open new eras in clinical oncology. The purpose of this review is to provide an overview of the current methodologies involved in liquid biopsies and their application in isolating tumor markers for detection, prognosis, and monitoring cancer treatment outcomes

    Responses of soil organic carbon, aggregate diameters, and hydraulic properties to long-term organic and conventional farming on a Vertisol in India

    Get PDF
    Organic matter management can improve soil structural properties. This is crucial for agricultural soils in tropical regions threatened by high rainfall intensities. Compared to conventional farming, organic farming is usually deemed to increase organic carbon and improve soil structural properties such as stability and permeability. However, how much, if any, buildup of organic carbon is possible or indeed occurring also depends on soil type and environmental factors. We compared the impact of seven years of organic farming (annually 13.6 t ha−1 of composted manure) with that of conventional practices (2 t ha−1 of farmyard manure with 150–170 kg N ha−1 of mineral fertilizers) on soil structural properties. The study was conducted on a Vertisol in India with a two-year crop rotation of cotton soybean wheat. Despite large differences in organic amendment application, organic carbon was not significantly different at 9.6 mg C g−1 on average in the topsoil. However, the size distribution of water-stable aggregates shifted toward more aggregates <137 μm in the organic systems. Cumulative water intake was lower compared to the conventional systems, leading to higher runoff and erosion. These changes might be related to the lower pH and higher exchangeable sodium in the organic systems. Our results indicate that higher application of organic amendments did not lead to higher soil organic carbon and associated improvement in soil structures properties compared to integrated fertilization in this study. Chemical properties may dominate soil aggregation retarding the uptake and integration of organic amendments for sustainable agricultural intensification in tropical, semiarid climates

    Association of genes with phenotype in autism spectrum disorder.

    Get PDF
    Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized by impairments in social interaction and speech development and is accompanied by stereotypical behaviors such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable significance of the genetics associated with autism has led to the identification of many risk genes for ASD used for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and development of new clinical and pharmacological treatments for ASD

    Chemokine-cytokine networks in the head and neck tumor microenvironment

    Get PDF
    Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal patient prognosis. Despite significant advances in treatment modalities, the five-year survival rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis, response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell–cell interactions in the TME to regulate many cancer hallmarks. This review summarizes the current understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic resistance development.This study was supported by Ramalingaswami Fellowship (Grant number: D.O.NO.BT/HRD/35/02/2006) from the Department of Biotechnology, Govt. of India, New Delhi to Muzafar A. Macha. Sidra Medicine Precision Program funded this research to Mohammad Haris (5081012001, 5081012001) and Ajaz A. Bhat (5081012003)
    • …
    corecore