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Abstract: Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal
patient prognosis. Despite significant advances in treatment modalities, the five-year survival
rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive
understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of
the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of
cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis,
response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the
development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small
secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell–cell
interactions in the TME to regulate many cancer hallmarks. This review summarizes the current
understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in
activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic
resistance development.

Keywords: head and neck squamous cell carcinomas; cytokines; chemokines; tumor microenviron-
ment; apoptosis; invasion; metastasis; angiogenesis; response to therapy; immune evasion

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease with
a dismal prognosis. With an annual incidence of ~800,000 new cases and 350,000 deaths
worldwide, HNSCC is the sixth most common cancer globally [1]. HNSCC includes tumors
of the oral cavity, hypopharynx, oropharynx, larynx and, paranasal sinuses and is clinically,
pathologically, phenotypically, and biologically a heterogeneous disease [2]. Oral squamous

Int. J. Mol. Sci. 2021, 22, 4584. https://doi.org/10.3390/ijms22094584 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6465-9096
https://orcid.org/0000-0002-9248-9039
https://orcid.org/0000-0003-0728-1936
https://orcid.org/0000-0003-3640-6275
https://orcid.org/0000-0003-4468-4435
https://doi.org/10.3390/ijms22094584
https://doi.org/10.3390/ijms22094584
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22094584
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22094584?type=check_update&version=2
KV15815
Highlight

KV15815
Highlight



Int. J. Mol. Sci. 2021, 22, 4584 2 of 23

cell carcinoma (OSCC), being the primary subtype of HNSCC, accounts for two-thirds of
the cases occurring in developing nations. Although tobacco and alcohol consumption ac-
count for nearly 75% of the total HNSCC cases, there has been a recent rise in the incidence
of Human Papilloma Virus (HPV) associated oropharynx cancers (OPC) [3]. Cytokines
and chemokines are soluble, low molecular weight secretory proteins, which regulate lym-
phoid tissue development, immune and inflammatory responses by controlling immune
cell growth, differentiation, and activation [4,5]. While the cytokines are non-structural,
pleiotropic proteins or glycoproteins, which have a complex regulatory influence on inflam-
mation and immunity, chemokines are a large family of low molecular weight (8–14 KDa)
heparin-binding chemotactic cytokines that regulate leukocyte trafficking, development,
angiogenesis, and hematopoiesis [4,5]. Based on the variations in the structural motif of the
first two closely paired and highly conserved cysteine residues, chemokines are divided
into CXC, CC, CX3C, and the C subfamilies. While the C subfamily has only two cysteine
residues, CXC, CC, and CX3C have four cysteine residues [6]. The letter “L” followed by a
number denotes a specific chemokine (e.g., CCL2 or CXCL8). The receptors are labeled
by the letter R followed by the number (e.g., CCR2 or CXCR1) [7,8]. Based on the con-
served glutamic acid-leucine-arginine “Glu-Leu-Arg” (ELR) motif at the NH2 terminus, the
CXC chemokine family is further subdivided into ELR+ve and ELR−ve. The ELR+ve CXC
chemokines are angiogenic and activate CXCR2 mediated signaling pathway in endothelial
cells, while the ELR−ve CXC chemokines are angio-static and are potent chemo-attractants
for mononuclear leukocytes [9–11]. Cytokines such as TNF (α and β), interleukin 1 family
(IL-1α, IL-1β, IL-1 receptor antagonistic (IL-Ira) and IL-2, IL -6, IL-8, IL-10, IL-11, IL-12,
IL-15, IL-16, IL -17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, interferon’s (α, β, and
γ), TGFβ, are produced by various types of cell including mononuclear phagocytic cells,
T-lymphocytes, B-lymphocytes, Langerhans cells, polymorph nuclear neutrophils (PMNs),
and mast cells [12]. Based on their biological properties, these cytokines are classified
into T-helper 1 (Th1), T-helper 2 (Th2), and T-helper 17 (Th17) [13]. While Th1 and Th2
cytokines stimulate cellular and humoral immune responses, Th17 cytokines are known to
regulate inflammatory responses and autoimmunity [13].

In addition to regulating immune cell function, recent studies have shown that cy-
tokines and chemokines play an important role in cancer-related inflammation and immune
evasion processes [14] and help in the development and progression of many tumors in-
cluding HNSCC [15–17]. For example, cytokines/chemokines and growth factors like
epidermal growth factor (EGF), IL-1α, IL-1β, IL-6, IL-8, TNF-α, TGF-β, RANTES (CCL5), fi-
broblast growth factor (FGF), monocyte chemo-attractant protein 1 (MCP-1), tumor necrosis
factor (TNF), family granulocyte-macrophage colony-stimulating factor (GM-CSF), vascu-
lar endothelial growth factor (VEGF), and hepatocyte growth factor (HGF), are upregulated
in the HNSCC tumor micro-environment (TME) and are involved in the progression and
metastasis [18,19]. These cytokines and chemokines induce cellular transformation [20],
control autocrine or paracrine communication within and between the individual cells in
the TME [21], and play diverse roles in the HNSCC by controlling processes not limited
to Epithelial–Mesenchymal Transition (EMT), anoikis resistance, invasion and metastasis,
angiogenesis and development of therapeutic resistance [22], thus, contributing to the
development of aggressive HNSCC tumors. These cytokines and chemokines also create
an immunosuppressive TME and help evade anti-tumor immune response [21].

2. HNSCC Tumor Microenvironment

The HNSCC TME is a heterogeneous complex of cellular and non-cellular compo-
nents that dictate aberrant tissue function and promote the development of aggressive
tumors [23]. While the non-cellular components include extracellular matrix (ECM) pro-
teins and many physical and chemical parameters, cellular components of HNSCC TME
includes immune cells such as T cells, B cells, natural killer cells (NK cells), langerhans
cells, dendritic cells (DC), myeloid-derived suppressor cells (MDSCs), macrophages, tumor
associated-platelets (TAPs), mast cells, adipocytes, neuroendocrine cells, blood lymphatic
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vascular cells, endothelial cells (EC), pericytes and cancer-associated fibroblasts (CAFs) [24].
In addition to providing intermediate metabolites and nutrients to the tumor cells, these
stromal cells secrete a diverse array of cytokines, chemokines, and growth factors that
support tumor growth, progression, metastasis [25], host immunosuppression [14], and pro-
mote the development of aggressive tumors [22] (Figure 1). However, dysfunctional T-cells,
regulatory T cells (Tregs), MDSCs, impaired NK cell activity, and type 2 macrophages (M2)
present in the HNSCC TME have an inverse function and promote tumor growth, metasta-
sis, and resistance to therapy [26]. The immunosuppressive HNSCC TME is also facilitated
by the downregulation of MHC molecules (human leukocyte antigen, HLA), inactivation
of the antigen processing machinery (APM), and dysregulation of checkpoint proteins
(reviewed in [27]). The important HNSCC-associated TME cells, cytokines, chemokines,
and growth factors are discussed below.
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Figure 1. Chemokine and cytokine-mediated crosstalk in head and neck squamous cell carcinoma (HNSCC) tumor micro-
environment (TME). Cytokines and chemokines secreted by a variety of stromal cells affect tumor cell growth, proliferation
& metastasis in many ways. By inducing immune-suppressive TME, they promote immune evasion and metastasis. Many
chemokines and cytokines help degrade extracellular matrix (ECM) proteins, induce angiogenesis, and thereby promote
invasion and metastasis.

Cancer-associated Fibroblasts (CAFs) are the major cell type in the HNSCC and help
maintain a favorable TME aiding tumorigenesis [28]. Though controversial, CAFs are
believed to be generated from myofibroblasts, transformed cancer cells, epithelial cells
via epithelial-mesenchymal transition (EMT), resting resident fibroblasts or pericytes via
mesothelial-mesenchymal transition (MMT), endothelial cells via endothelial to mesenchy-
mal transition (EndMT), adipocytes, and bone marrow-derived mesenchymal stem cells
(MSCs) [29]. HNSCC CAF’s secrete a wide variety of cytokines (autocrine or paracrine in
function) and tumor-promoting factors essential for inflammation, cell proliferation, tumor
growth, invasion & metastasis, angiogenesis, cancer stem cell (CSC) maintenance, and
resistance to therapy [30]. These include various cytokines, interleukins (ILs) such as IL-6,
IL-17A, and IL-22, growth factors such as EGF, HGF, VEGF, chemokines such as C-X-C mo-
tif chemokine ligands (CXCLs), CXCL1, CXCL8, CXCL12 (SDF-1α), and CXCL14, and C-C
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motif chemokine ligands (CCLs), CCL2, CCL5 and CCL7 [31,32]. These factors promote
ECM degradation and modulation by secreting matrix metalloproteins (MMPs) such as
MMP-2 and MMP-9 for effective invasion and metastasis of tumor cells [33]. Endothelins
(iso-peptides) produced by vascular epithelium upon binding to CAFs activate ADAM17
and trigger release of EGFR ligands such as amphiregulin and TGF-α [33]. These ligands
activate EGFR signaling in HNSCC cells, upregulate COX-2 and stimulate the growth, in-
vasion, and metastasis of HNSCC cells [34]. Although little is known about the interaction
of CAF-tumor cells in HNSCC, poor overall survival (OS) of HNSCC patients has been
associated with increased α-SMA expression regardless of the clinical stage [30]. All these
findings ascertain the credibility of CAFs in promoting growth and thus can be useful
in facilitating the development of new therapeutic strategies against tumor progression
in HNSCC.

Macrophages engage in both innate and adaptive immune responses and protect the
body against invading pathogens. These macrophages can either help tumor growth or
destroy tumor cells depending upon the external cues from TME. In response to interferons,
macrophages are polarized and activated into pro-inflammatory classical M1 type that
produces cytokines, such as interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-23,
IL-12, CCL5, CXCL9, CXCL10, and CXCL5 and help destroy tumor cells via activating
Th1 cells [35]. M2 type macrophages closely resemble tumor-associated macrophages
(TAMs) and are characterized by increased expression of IFN-γ, CCL2, CCL5, CXCL16,
CXCL10, CXCL9, TNF-α, MMP9 and IL-10, arginase-1, and peroxisome proliferator-
activated receptor-γ (PPAR-γ) [36]. HNSCC tumors with high M2 TAM infiltration have
an advanced stage lymph node metastasis, and poor patient outcome [37]. Elevated CD68+

macrophages are also associated with poor patient survival [38]. Furthermore, increased
M2 TAM infiltration is associated with increased tissue levels of macrophage migration
inhibitory factor (MIF) and serum TGF-β levels. Though TGF-β is suppressive in function,
MIF helps recruit neutrophils to the TME and promotes invasion and metastasis by produc-
ing ROS, MMP9 and, VEGF expression [39]. All these studies conclusively established the
pro-tumorigenic role of M2 TAMs in regulating cell proliferation, invasion & metastasis,
angiogenesis, and promoting immune evasion.

Neutrophils are the most abundant granulocytes present in the blood and an impor-
tant component of innate and adaptive immunity by regulating T cell activation, antigen
presentation and T cell-independent antibody responses [40]. Like TAMs, tumor-associated
neutrophils (TANs) can be either tumor-promoting (N2) or tumor suppressors (N1). By ac-
tivating platelets, neutrophils enhance the risk of cancer-associated venous thromboem-
bolism (VTE) and death in HNSCC patients [41]. Due to the lack of specific markers,
identification and characterization of TANs are difficult. However, nonspecific markers
including CD14, CD15, CD16, CD11b, CD62L and CD66b are routinely used for their
isolation and characterization (reviewed [37]). Natural Killer (NK) cells are large granular
CD3−ve cytotoxic type 1 innate lymphoid cells that detect and kill virus-infected and
cancer cells. Based on the expression of adhesion molecules CD56 and the low-affinity
FcγR CD16, NK cells are classified into a highly cytotoxic CD56lowCD16high population
predominantly present in the peripheral blood, and less cytotoxic CD56highCD16low cells
present in the secondary lymphoid and other tissues [42]. These CD56highCD16low NK
cells, like neutrophils and macrophages, kill cells directly by secreting a plethora of im-
munomodulatory molecules such as IL-5, IL-8, IL-10, IL-13, CCL2, CCL3, CCL4, CCL5
IFN-γ, TNF-α, GM-SCF and, CXCL10 [43]. Recently, tumor-infiltrating NK cells from HN-
SCC patients have been shown to possess a decreased expression of activating receptors
like NKG2D, DNAM-1, NKp30, CD16, and 2B4 and upregulation of inhibitory receptors
NKG2A and PD-1 compared to NK cells from matched peripheral cells [44]. The study also
observed low cytotoxicity and reduced IFN-γ secretion from tumor-infiltrating NK cells
in vitro [44]. Though no stimulation is needed for NK activation, a small percentage of NK
T-cells (NKT) require priming for activation [45]. These NKT cells are specialized cells with
morphological and functional characteristics and surface markers of both T and NK cells.
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The presence of another small subset of invariant NK T cells (iNKT) that express invariant
αβ T cell receptors is associated with poor outcomes for HNSCC patients [46,47].

Myeloid-derived suppressor cells (MDSCs) are another class of inhibitory immune
cells present in the TME of almost all solid tumors. MDSCs are a heterogeneous population
of immature immune cells comprising early myeloid progenitors, immature dendritic cells
(DCs), neutrophils, and monocytes, which negatively regulate the activity of NK cells and
induce Tregs [48]. Though difficult to identify due to their diversity, MDSCs were initially
identified from HNSCC patients as immature CD34+ cells [49,50]. MDSCs inhibit the
production of innate inflammatory cytokines such as IL-23, IL-12, and IL-1 by DCs, thereby
suppressing antitumor IFN-γ secreting CD4+ and CD8+ cytotoxic T cells [51]. They reg-
ulate T cell activation, migration, proliferation and induce apoptosis by overexpressing
immunomodulatory cytokines like IL-10, TGF-β, CD86, PD-L1, TGF-β and suppressing
IFN-γ production [52]. MDSCs indirectly suppress the T- cell activation by inducing Tregs,
TAMs, and modulating NK cell activity. They also promote angiogenesis and metastasis by
producing βFGF, TGF-β and, VEGFA and degrading ECM [53]. Therefore, targeting the
inhibitory functions of MDSCs represents a novel avenue for therapeutic intervention in
HNSCC tumors.

Regulatory T-cells are immunosuppressive cells with a crucial function in maintaining
self-tolerance immune homeostasis (reviewed in [51]). They are also known to regulate
CD4+ and CD8+ T cells, macrophages, B cells, NK cells, and DCs. Based on origin, local-
ization, and marker expression, Tregs are mainly divided into CD25+ CD4+ Tregs (natural
regulatory T cells) that mature in the thymus and peripheral CD25+ CD4+ Tregs (induced
or adaptive Tregs). [54]. These Tregs are known to function by releasing IL-35, IL-10, and
TGF-β, inhibiting DC maturation, cytolysis and granzyme/perforin dependent killing
of cells, metabolic disruption of effector T cells, and modulation of DC maturation [55].
The genomic and epigenomic differences between HPV+ve and HPV−ve HNSCC tumors
favor less infiltration of PD-1 and TIM3 co-expressing CD8+ T-cells in HPV−ve HNSCC [56].
On the contrary, HPV+ve HNSCC tumors are infiltrated with increased Tregs, Tregs/CD8+,
and CD56low NK cells, CD56+ CD3+ NKT cells, CD3+ T cell, and activated T cells with
increased CTLA4 and PD-1 expression and PD-1/TIM3 co-expressing CD8+ T cells, sug-
gesting compromised immune system [57]. All these studies suggest heterogeneity in
cellular phenotype, function, and location among HPV+ve and HPV−ve HNSCC tumors
and may potentially be responsible for the varied therapeutic responses.

Besides Tregs, MDSCs, NK, macrophages, neutrophils, platelets, mast cells, adipose
cells, and neuroendocrine cells constitute an integral part of the HNSCC TME. In addition to
their thrombosis and wound healing activities, thrombocytes or platelets play an important
role in tumor biology and inflammation. Besides the secretion of specific granules, viz.
dense granules, lysosomes, and α-granules involved in platelet aggregation, platelets also
secrete various growth factors in the TME [58]. Interestingly, these granules also contain
membranous protein CD63 and lysosomal associated membrane protein 1 & 2 (LAMP1/2),
integrin α2β3, p-selectin and glycoprotein-Iβ (GP-Iβ), and secrete molecules like ATP, ADP,
Ca2+, serotonin, phosphatase into the TME [59]. It is interesting to mention that CD63
and LAMP1/2 membrane proteins help create an acidic environment for acid hydrolases’
optimum activity to degrade ECM [60]. Besides, α-granules also contain many growth
factors, a wide variety of chemokines, MMPs, proteins like thrombospondin, fibrinogen,
fibronectin, vitronectin, Von Willebrand factor (VWF), and inflammatory proteins that
stimulate tumor growth and angiogenesis [61].

Mast cells are another critical component of the immune system regulating both innate
and acquired immune response. When mast cells undergo cross-linkage with IgE receptor
(FcERI) on their surface, mast cells exocytose many inflammatory mediators including
histamine, heparin, prostaglandin D2 (PGD2), leukotriene C4 (LTC4), chondroitin sulfate E,
chymase, tryptase, Cathepsin G, carboxypeptidase-A (CPA1), GM-CSF and interleukins
into the TME [62]. These cells also secrete fibroblast growth factor-2 (FGF-2), VEGF, MMPs,
protease, cytokines, chemokines, and promote proliferation, invasion, and migration of
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neoplastic cells and angiogenesis [63,64]. Mast cells produce numerous pro-angiogenic
factors specific to HNSCC TME, such as FGFβ, TGFβ, tryptase, heparin, and MMPs,
to support growth and development [65].In the HNSCC, increased mast cell numbers have
been associated with angiogenesis and tumor progression [66].

Neuroendocrine cells release norepinephrine (NE) and epinephrine (E) neurotrans-
mitters. They may either show strong antitumor properties or pro-tumorigenic effects
by regulating tumor cell invasion and migration and modulating the immune response.
Neurotransmitter substance P (SP) (a member of the tachykinin neuropeptide family),
secreted by both tumor and stromal cells, is known to induce many cytokines (IL-1, IL-6,
TNF-α). Neurotransmitter SP stimulates tumor cell migration and blocks the integrin
β1 mediated adhesion of T cells [67]. In addition, SP also acts as a mitogen factor via a
neurokinin-1 receptor (NK-1R), activates protein kinases (PK1 and 2), and promotes cell
migration [68], proliferation and protection from apoptosis [69]. Interestingly, both SP and
NK-1R are overexpressed and associated with the development and progression of HN-
SCC [70,71]. Secretion of NE neurotransmitters also inhibits TNF-α synthesis and thereby
prevents the generation of CTLs [72]. The α- and β-adrenoreceptors (ARs) for NE and E
are overexpressed in the HNSCC cell lines [73], and administration of NE has been shown
to increase the proliferation of these cells [74]. A recent study has shown that increased
expression of β2-AR promotes EMT in HNSCC cells by activating the IL-6/STAT3/Snail1
signaling pathway [75]. In addition, increased expression of β2-AR was associated with
differentiation, lymph node metastasis, and reduced OS of HNSCC patients [75].

Dendritic cells are the most potent antigen-presenting cells (APCs). Through their
interaction with lymphoid and myeloid cells, DCs play a vital role in regulating adaptive
and innate immune responses during normal and pathophysiological conditions [76]. DCs
become immunogenic upon maturation by up-regulation of MHC class II, co-stimulatory
molecules, and by secretion of pro-inflammatory cytokines like IL-12, TNF-α, IL-1, and
IL-6 [77]. Interestingly, tumor-associated or tumor-treated DCs show low levels of co-
stimulatory molecules [78], slow production of IL-12, inhibited antigen-processing ma-
chinery (APM), suppressed endocytic activity, and abnormal motility, etc. [79,80]. While
higher tumor infiltration of immature DCs is usually observed, increased immature DCs in
patients’ peripheral blood with HNSCC, esophageal, lung, and breast cancer have also been
reported [81]. Through abortive proliferation, anergy of CD4+ and CD8+ T lymphocytes or
Tregs produce IL-10 and TGF-β and prevent immune response, immature DCs also induce
tolerance, thus inhibiting co-stimulatory signals [82,83].

Endothelial cells (ECs) play an important role in the development and progression of
many tumors [84]. By secreting large amounts of VEGF [85], ECs, in an autocrine manner,
induce Bcl-2 expression in the TME micro-vessels and promote angiogenesis and tumor
growth [86–88]. By regulating the secretion of various CXC chemokines in the HNSCC TME,
Bcl-2 is known to enhance invasiveness and the development of recurrent tumors [89,90].
VEGF via IKK/IκB/NF-κB signaling pathway also modulates the expression levels of
growth-related oncogene GRO-α (or CXCL1) and interleukin 8 (CXCL8) expression in
HNSCC [86] and promotes the development of aggressive tumors. Another study reported
that Jagged1, a notch ligand, induced by the growth factors via the activation of mitogen-
activated protein kinase-activator protein-1 (MAPK) in HNSCC cells, triggered Notch
signaling in adjacent endothelial cells, thus enhancing neovascularization and tumor
growth in vivo [91]. Like the ECs, pericytes are an important cellular component of
TME and critically important for tumor initiation, progression, and angiogenesis [92].
Pericytes and ECs communicate with each other by paracrine signaling or by chemo-
mechanical signaling pathways [93]. By providing mechanical and physiological support
to EC, pericytes stabilize vascular walls, promote vessel remodeling, maturation [94,95],
regulation of blood flow, and vessel permeability [96]. Although, there are limited studies
on the role of pericytes in HNSCC, some studies have shown the presence of abnormal
vessels in the OSCC tumor tissue and a reduction of pericyte population in the peritumoral
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area, thus showing that the pericyte population is significantly affected during OSCC
development [97–99].

Extracellular Matrix and Chemokine/Cytokine Activation

The ECM is a 3D network of interwoven macromolecules including glycoproteins,
structural fibrous proteins (collagen, elastin, fibronectin, laminin, and tenascin), immersed
with enzymes, growth factors, non-cellular components, physical and chemical parameters
such as pH, oxygen tension, interstitial pressure, and fluid flux. The ECM provides biophys-
ical, structural, mechanical, and biochemical support to the surrounding cells and helps
in-cell adhesion, cell–cell communication, and differentiation [100,101]. Collagen, which
constitutes about 30–40% of the total mass of ECM, plays a vital role in cell behavior regu-
lation and development by providing mechanical and structural support and helps in cell
adhesion, differentiation, migration, wound repair, and tissue scaffoldings [102,103]. Over-
expression of type IV collagen is often observed in HNSCC [104], and collagen XVII, Col15
interaction with integrins has been shown to chemotactically attract HNSCC cells [105].
Notably, Type I collagen has been shown to stimulate the expression of IL-1α, IL-1β, IL-6,
TNF-α, and TGF-β in HNSCC [106]. Glycoprotein fibronectin (Fn) produced by fibrob-
lasts and endothelial cells interacts with fibrin, integrins, heparin, collagen, gelatin, and
syndecan and promotes tumor progression, migration, invasion, and therapeutic resis-
tance [107]. Peptide hydrolases and MMPs produced by tumor and stromal cells cleave
the basement membrane, cell surface receptors, and adhesion molecules and result in the
disorganization and deregulation of ECM necessary for invasion and metastasis [108,109].
As in many tumors, ECM proteins such as collagen, laminin, and fibronectin have been
shown to promote HNSCC tumor growth, progression, and metastasis [110,111]. Besides,
increased expression of fibronectin, tenascin, and decreased expression of laminin, collagen
type IV and vitronectin have also been reported to be associated with aggressive HNSCC
phenotypes [37,112–114]. While the interaction of integrins, particularly α5β1 integrin
with fibronectin, and αvβ5 with vitronectin were shown to modulate HNSCC cell behavior,
αvβ3-osteopontin, αvβ3-fibronectin, and α5β1-fibronectin interactions are involved in
angiogenesis [115]. Overall, ECM plays a very pivotal role in the development and metas-
tasis of tumors by altering the phenotype of stromal or tumor cells, availability of secreted
cytokines/chemokines and growth factors, providing acidic and hypoxic conditions for
the tumor cells to survive and prevent neoplastic cells from immune attack [116].

3. Deregulated Chemokine and Cytokine Expression in HNSCC

Deregulation of cytokines and chemokines is a hallmark of many cancers [18,19].
Using bioinformatics analysis of the Cancer Genome Atlas (TCGA) data, we also observed
many cytokines and chemokines deregulated in HNSCC (Figure 2). Consistent with these
observations, previous studies have also reported a decrease in Th1 and increase in Th2
cytokine levels [117,118] such as IL-4, IL-6, IL-8, IL-10, GM-CSF, VEGF, prostaglandin E2
(PGE2), and bFGF during the development and progression of HNSCC [119–121]. While
the increased IL-10, IL-17A, and IL-22 levels, and decreased IFN-γ expressions are collabo-
rated with the loco-regional metastasis [122,123], increased VEGF, FGF, and IL-8 expression
contribute to tumorigenesis, metastasis, and HNSCC angiogenesis [16,124,125]. In addition,
stromal IL-33 has been shown to promote the enrichment of Foxp3+ Tregs and correlated
with poor HNSCC prognosis [126]. These studies further showed that stimulation by IL-33
increased infiltration of ST2-expressing Foxp3+ GATA3+ Tregs (ST2 is the only receptor
of IL-33) with increased expression of immune suppressive IL-10 and TGF-β1 [126]. Im-
portantly, IL-1β is known to promote drug resistance by modulating Snail expression,
thereby regulating COX-2-dependent E-cadherin expression in HNSCC [127]. Furthermore,
TGF-β is known to increase invasion and metastasis by increasing STAT3 expression and
malat1/miR-30a interaction in HNSCC [128]. While the increased expression of CCL2 by
CAFs enhanced proliferation, invasion and metastasis, and HNSCC tumor growth, the
use of specific CCL2 inhibitors significantly reduced tumor burden in vivo [129]. Similarly,
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increased expression of CCL3 and CCR1 was observed in HNSCC and associated with
increased lymph node metastasis [130]. Increased expression of CCL5 in OSCC was also
shown to induce MMP-9 secretion and increased cell migration, but the use of siRNA
against MMP-9 inhibited CCL5 induced cell motility [131]. Using in vitro and in vivo
models, CCL7 has been shown to modulate cytoskeleton re-organization in OSCC, an
important regulator of invasion and migration [132]. Use of CCL7 neutralizing antibod-
ies or CCR1 and CCR3 antibodies inhibited invasiveness of OSCC cells [132]. Increased
CCL20 or MIP-3α is also associated with increased metastasis and the use of CCL20 siRNA
reduced invasive and migratory potential of OSCC cells [133]. CCL21 is a potent stimu-
lator for SCC migration [134], and CCR7 (CCL21 receptor) positive cells have increased
capacity to adhere to lymph nodes [134]. In collaboration with these studies, upregulated
CCR7 expression in HNSCC has been shown to induce cytoskeletal reorganization, and
increasing MMP-9 thereby stimulated migration, invasion, and adhesion [134–137]. No-
tably, increased CCR7 expression was correlated with tumor size, clinical stage, recurrence,
lymph node metastasis, poor OS, and DFS of HNSCC [132]. Likewise, overexpression and
hyperactivity of CCL19/CCL21/CCR7 signaling pathway were positively correlated with
lymph node metastasis, and poor prognosis of HNSCC patients [134,138,139].
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Figure 2. Deregulated chemokines and cytokines in HNSCC. The heat maps showing deregulated expression of
(A) chemokines and, (B) cytokines in HNSCC patients. The heat maps were constructed through data mining in the
HNSCC TCGA database by using the UCSC Xena browser (http://xena.ucsc.edu (accessed on 9 February 2021)) (adjacent
normal, n = 44, tumor tissue, n = 518 and metastatic = 02) samples).

Like many cytokines, increased CXCL1 expression activates epidermal growth fac-
tor receptor (EGFR) signaling and increased human dysplastic oral proliferation [140].
Likewise, CXCL8/CXCR1 and CXCL8/CXCR2 axis are known to induce tumor growth,
angiogenesis, motility, and EMT [141]. Consistent with these observations increased expres-
sion of CXCL8 and CXCR2 in HNSCC has been shown to promote invasion and migration,
and this effect was reversed upon the use of siRNA or blocking antibodies against CXCL8

http://xena.ucsc.edu
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or CXCR2, respectively [142]. Importantly, CXCL8 polymorphisms are also associated
with an increased risk of HNSCC development [143]. While CXCL9 upregulation was
reported in the serum of patients with HNSCC compared to healthy controls and associated
with poor clinical outcome [144], its downregulation by siRNA resulted in a significant
reduction in cell proliferation, migration, and invasion of HNSCC in vitro [144]. Similarly,
CXCL12/SDF-1, an α-chemokine via G-protein-coupled CXCR4, regulates stem/progenitor
cell trafficking [145]. Of the entire chemokines, CXCL11/CXCL12/CXCR4/CXCR7 axis
is the most studied chemokine system in HNSCC [146]. While the expression of CXCL12
(SDF-1α) and CXCR4 progressively increased from oral leukoplakia (OLK) to dysplasia to
frank malignancy [147], hyperactivation of this axis in HNSCC is associated with aggres-
sive tumors, regional and distant metastasis, and lower DFS [148]. Furthermore, CXCL12
polymorphism is associated with an increased risk of HNSCC development [149]. Similarly,
XCR1/XCL1 axis is known to enhance MMP-2, MMP-7, and MMP-9 secretion and increase
proliferation, invasion, and migration of HNSCC cells [150]. All these studies confer the
involvement of cytokines and chemokines in the development of aggressive tumors and
therefore as important avenues for novel therapeutic intervention in HNSCC (Table 1).

Table 1. Deregulated Chemokines/Cytokines and their Therapeutic Targeting in HNSCC.

S.No Chemokine/
Cytokine Expression Signaling Pathway(s)

Activated
Interacts with

Cells Involved in Targeted OR Can Be
Targeted by References

1 IL-1 Up MAPK/ERK1/2, NF-KB,
PI3K/AKT, & JAK/STAT

Tumor, T-cells,
TAMs &

macrophages

Recruitment of
TAMs, MDSCs

and Tregs

Recombinant IL-1R
antagonist (anakinra) [151,152]

2 IL-1β Up NF-kB, ERK1/2, JNK, CREB Endothelial &
leukocytes

Increase integrin
expression

Lenti virus mediated
shRNA [153–157]

3 IL-4 Up MAPK Tumor, TAMs &
endothelial cells

Promote tumor
growth,

angiogenesis &
immuno-

suppression

rIL-4 with
Pseudomonas
exotoxin (PE)

targeting IL-4R

[158]

4 IL-6 Up
JAK/STAT, PI3K/AKT,

RAS/RAF/MEK/ERK1/2 &
Wnt

Tumor, Th17 cells &
CAFs

Support tumor
growth, immune
evasion & CAF

activation

Humanized antiIL-6R
antibody

(Tocilizumab)
[159,160]

5 IL-8 Up NF-kB, MAPK,
CXCR1/2/NOD1/RIP2

Tumor, endothelial
cells & neutrophils

Promotes tumor
invasion,

angiogenesis &
recruit

neutrophils to
the TME

Humanized anti- IL-8
antibody

(HuMax-IL8)
[161,162]

6 IL-10 Up JAK/STAT3 T cells, TAMs

Suppress T-cell
proliferation and

promote
immuno-

suppression

- [163,164]

7 IL-15 Up JAK/STAT3, PI3K/AKT CD8+ T cell & NK
cell

Stimulate NK
and CD8+ T cell

function

Recombinant human
IL-15 (rhIL15) [124]

8 IL-33 Up RAS/RAF//MEK/ERK1/2
and JNK Tregs Enrich FOXP3+

Tregs Anti-IL-33 antibodies [125,129,
165]

9 CCL-2 Up MAPK, PI3K/AKT Monocytes, TAMs Recruits TAMs
and monocytes

CCL-2 inhibitor
mNOX-E36 or

neutralizing antibody
CNTO88

[166]

10 CCL-7 Up NF-kB and MAPK DCs, NK and T
cells

Recruitment of
TAMs and CAFs

proliferation

CCL-7 neutralizing
antibodies [132,167]

11 CCL-20 Up NF-kB,
RAS/RAF/MEK/ERK1/2

NK, TAMs and
Tregs

Recruit TAMs &
Tregs

Anti-CCL20
(WO2017011559A1)
or CCR6 antibodies

[133,168]
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Table 1. Cont.

S.No Chemokine/
Cytokine Expression Signaling Pathway(s)

Activated
Interacts with

Cells Involved in Targeted OR Can Be
Targeted by References

12 CXCL-1 Up
PI3K/AKT/mTOR,

RAS/RAF/MEK/ERK, and
NF-kB

MDSCs, TAMs,
CAFs

Recruit MDSCs
to TME and

promote
metastasis

Small molecule
inhibitor (C29)
against CXCR1

[140,169]

13 CXCL-8 Up PI3K/AKT, FAK/Src,
Rho/GTPase and MAPK

CSC, endothelial
cells

Promote
angiogenesis,

and CSC
proliferation

Antibodies
(ABX-CXCL8,

HuMax CXCL8) or
CXCR1/2 inhibitor

Reparixin

[142,170]

14 CCR-1 Up RAS/RAF/MEK/ERK,
AKT-mTOR, JAK/STAT3

MDSCs, TAMs, T
cells

Tumor
infiltration of

MDSCs and Treg
cells

CCR-1 inhibitor
MLN3897 [169–171]

15 CXCR-2 Up
MAPK/MEK/ERK1/2,
NF-kB, PI3K/AKT and

JAK/STAT3

Cancer cells, TAMs,
Monocytes, T cells

Increase cell
proliferation

Antibodies
(ABX-CXCL8,

HuMax CXCL8) or
CXCR-2 inhibitor

Reparixin

[162,172]

16 GM-CSF Up
JAK/STAT, SRC kinase,

MAPK/MEK/ERK1/2, and
PI3K/AKT

Tumor cells, DC

DC
differentiation,
TAM & Treg
function and

favour
IL9-producing
Th (Th9) cells

Recombinant
GM-CSF or

GM-CSF-based DNA
vaccines

[18,19,173]

17 βFGF Up FGFR, JAK/STAT,
RAS/RAF/MEK/ERK

Tumor cells, CAFs
and endothelial

cells

Promote cell
proliferation and

tumor growth

FGFR inhibitors or
antibodies

(MFGR1877S, BAY
1179470)

[174]

18 IFN-γ Down

IFN-γR1/2/JAK-STAT,
PI3K/AKT/mTOR,

IFN-γ/ICAM1-PI3K-Akt-
Notch1

Tumor cells, DC, T
cells, Tregs,

Macrophages,

Recruits NK cells
to the TME &

modulates their
activity

rIFN-γ [122,123,175,
176]

19 TGF-β Up TGFβRII/SMAD3,
TGFβ/TAK1, NF-κB

Tumor cells,
Macrophages,

Tregs, NK cells,
MDSCs

DC dysfunction,
TAMs formation,

suppression of
NK cells, MDSC

recruitment

Anti TGF-β antibody [18,19,128,
177,178]

20 TNF-α Up MAPK, PI3K/AKT, NF-kB,
JAK/STAT, FAK/Src Tumor cells, CAFs

Increase
angiogenesis,
invasion, and

metastasis

- [18,19,179,
180]

21 VEGF Up PI3K/AKT/mTOR,
RAS/RAF/MEK/ERK Endothelial cells

Controls
vascular

permeability &
angiogenesis

Anti-VEGF
(Bevacizumab) or

anti-VEGFR
(Ramucirumab)

antibodies

[181]

4. Chemokine and Cytokine Mediated Signaling Pathways in HNSCC

Chemokines and cytokines exert their effects by activating diverse signaling pathways
in HNSCC (Figure 3). Chemokines like TNFα, IL-1, HGF, IFN-α, and their receptors activate
MAPK, nuclear factor-kappa-β (NF-kB), and phosphatidylinositol-3 kinase (PI3K)/Akt, sig-
nal transducer and activator of transcription (STAT) pathways involved in cell proliferation,
survival, invasion, metastasis, and tumor growth [151,182]. NF-kB regulates many genes
involved in inflammation and tumor progression. [183,184]. Proinflammatory cytokines
like IL-1 and TNF-α by activating IkB kinases (IKKs) and casein kinase 2 (CK2) promote
phosphorylation and degradation of NF-kB inhibitors (IkBs). CCL22 is overexpressed
in HNSCC and is involved in cell proliferation, migration, invasion, cell transformation,
and Tregs infiltration [154]. Secretion of IL-1β by CAFs activates NF-κβ signaling in the
tumor cells, thereby increasing CCL22 expression [154]. By activating the ERK signaling
pathway and phosphorylation of c-Jun/Fos, c-Myc, and E-26-like protein 1 [155], IL-1β
also promotes cell survival and tumor progression [185]. Fascin is an actin cross-linking
protein that promotes tumor cell invasion [156]. IL-1β activates ERK1/2, JNK, NF-κB, and
CREB signaling pathways, increasing Fascin expression and promoting the invasion of
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HNSCC cells [156]. In addition to IL-1β, increased expression of IL-1α was also correlated
with distant metastasis of HNSCC [186].
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membrane protein GPCR activate an array of signaling pathways like PI3K/AKT/mTOR, JAK/STAT,
RAS/RAF, integrin mediates SRC/FAK and Rho/RAC. Deregulation of these signaling pathways is
known to promote initiation, progression, and metastasis in HNSCC.

As mentioned earlier, CXCR7 plays an important role in the progression of many
cancers. In the HNSCC, CXCR7 activates Smad2/3 signaling, increases TGF-β1 secretion,
and results in EMT of HNSCC cells associated with increased invasion and metastasis [187].
TGF-β, TGF-β receptor II and TGF-β-activated kinase 1 (TAK1) are upregulated in HNSCC
and result in constitutive hyper-activation of NF-κB with increased cell proliferation, mi-
gration, and invasion [188]. TGF-β1 via the TβRII/Smad3 signaling pathway also induces
VEGF secretion from HNSCC associated macrophages and helps promote angiogenesis and
metastasis [189]. In addition, an alternative TGF-β1-Smad3-Jagged1-Notch1-Slug signaling
pathway has been shown to favor tongue squamous cell carcinoma (TSCC) [190]. Similarly,
IL-17A was found to promote TSCC by downregulating the expression of miR-23b via
the activation of the NF-κB signaling pathway [191]. In addition to TGF-β1, TGF-β2 has
been shown to specifically activate MAPK/p38α/β signaling in the bone marrow that
causes induction of DEC2/SHARP1 and p27, and the downregulation of cyclin-dependent
kinase 4 (CDK4) and results in the dormancy of malignant disseminated tumor cells
(DTCs) [192]. IL-6 is known to activate many signaling cascades including JAK/STAT,
PI3K/AKT, RAS/MAPK, and Wnt signaling pathways affecting angiogenesis and metas-
tasis [193–196], and to induce a dysfunctional immune response. Constitutive activation
of IL-6/STAT3 signaling is associated with reduced (OS) in p16−ve HNSCC [197]. It was
recently shown that the IL-6 induced STAT3 signaling pathway promoted immunosup-
pressive HNSCC TME by upregulating PD-1/PD-L1 expression [198]. However, inhibition
of STAT3 signaling pathway downregulated PD-1/PD-L1 expression and improved im-
mune surveillance in TGFβr1/PTEN 2cKO mouse model of HNSCC [198]. IL-6 was also
shown to promote HNSCC tumorigenesis by activating fibroblasts and increasing tumor
cells–CAF crosstalk [199]. Like the IL-6/STAT3 signaling axis, activation of the STAT1
signaling pathway by IFN-α promotes immunosuppression in HNSCC [200,201]. The un-
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derlying molecular mechanisms revealed increased PD-L1 and RIG-I expression in tumor
cells [200,201], and PD-1 in immune cells [200] via IFNαR1 activation. IL-8 is upregulated in
HNSCC and affects pathways involved in inflammation. The RAS/MAPK signaling path-
way is critical for carcinogenesis and regulates inflammation, cell proliferation, survival,
and tumor growth [202]. Using in vitro studies, IL-8 was shown to regulate inflammatory
response by activating both NF-κB and MAPK signaling pathways in HNSCC [203]. In ad-
dition, IL-8 also activates the CXCR1/2-mediated NOD1/RIP2 signaling pathway, thereby
facilitating the formation and progression of HNSCC [161]. SDF-1/CXCL12-CXCR4 axis
has been shown to activate the Akt/PKB and ERK1/2 signaling pathway and induce
directional tumor cell migration, supporting its role in invasion and metastasis of HN-
SCC cells [204]. MCP-1/CCL2, is a potent monocyte-attracting chemokine which helps
recruit monocyte to the tumors [205], modulate pro-survival signals and promote HNSCC
progression [206].

5. Chemokines and Cytokines Promote Aggressive HNSCC Phenotype

Cytokines, chemokines, and their receptors are important players of TME and are
known for initiation, promotion, progression, metastasis, and development of aggressive-
ness [207]. For example, upregulation of CXCR7 increased cell migration and invasion
through the Smad2/Akt signaling pathway, promoted lymph node metastasis [208], and
is associated with the aggressive phenotype of HNSCC [187]. Further studies showed
that CCR7 in HNSCC is upregulated by NF-kB and AP1 and contributes to metastatic
phenotype [209]. Infiltrated macrophages are well-known contributors to aggressive
HNSCC [210]. The underlying mechanism revealed the involvement of the CCL2/EGF
positive feedback loop. The tumor cell-derived CCL2 transforms monocytes into M2-like
macrophages, resulting in the increased production of EGF, which activates EGFR signaling
in the tumor cells promoting the formation of invadopodia associated with increased
HNSCC cell motility [210]. Like CCL2, the role of the CXCL12 (SDF-1α)/CXCR4 axis in
the metastatic processes of HNSCC has been explored in many studies. Activation of the
CXCL12/CXCR4 axis enhances cell adhesion and MMP-9 secretion, thereby increasing HN-
SCC metastasis [211]. The CXCL12/CXCR4 axis, by upregulating MMP-13 via activation of
ERK1/2/AP-1 signaling pathway, also increased invasion and metastasis of laryngeal and
hypopharyngeal SCC (LHSCC) [147,212]. In support of these studies, CXCR4 upregulation
in HNSCC is confined to tumor nests, but not in the stroma [213,214]. CXCL5 and CXCL9
chemokines are essential determinants of tumor development and malignancy. Like SDF-
1α, overexpression of CXCL5 and CXCL9 induced invasion and migration of HNSCC cells
and aggravated HNSCC phenotype [144,215,216]. In a paracrine manner, CAF secreted
CCL11, and IL-33 promoted migration, invasion, and aggressive HNSCC phenotype of
cells [217,218]. Similarly, CCL21/CCR7 axis has been shown to promote MMP-9 release,
stimulate tumor cell survival, adhesion, invasion, and metastasis in HNSCC [134–137].
IL-8 and its receptors CXCR1 and CXCR2 are overexpressed in HNSCC and involved in
progression, metastasis, and aggressive tumor phenotype [161,219]. The underlying mech-
anisms revealed inactivation of PTEN and activation of the STAT3 signaling pathway by
IL-8/CXCR1/2 axis in promoting aggressive HNSCC phenotype [219]. In addition to IL-8,
migration inhibitory factor (MIF) from tumor cells induces CXCR2-dependent chemotaxis,
improved neutrophil survival, and release of CCL4 and MMP-9, helping develop aggres-
sive HNSCC phenotype [220]. Besides IL-8, the STAT3 signaling pathway is also activated
by the IL-6 cytokine known to be upregulated in most HNSCC patients. The IL-6 mediated
STAT3 activation upregulates many downstream target genes involved in proliferation,
invasion, migration, and EMT of HNSCC [193], suggesting its role in aggressive tumor
behavior. IL-6 promoter has aryl hydrocarbon receptor (AhR), suggesting the involvement
of AhR in translational regulation of IL-6 and development of aggressive HNSCC. The use
of AhR antagonists has been shown to reduce IL-6 expression and decreased the aggressive
phenotype of HNSCC cells [221]. Moreover, defects in TGF-β signaling are found to be
associated with the growth and development of HNSCC [222]. A recent study has reported
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overexpression of TGF-βRII in HNSCC and found this to be inversely correlated with local
disease aggressiveness [223].

6. Conclusions and Future Directions

Despite significant advances in the treatment modalities, the prognosis of HNSCC
patients has not changed considerably in decades, the underlying reasons being the aggres-
sive tumor behavior associated with local and distant metastasis at the time of diagnosis,
and intrinsic and acquired resistance to the currently available therapies. The HNSCC
TME is a very complex structure with interplay and convergence of several signaling
pathways. Cytokines and chemokines, as important entities of these interplays, contribute
to tumor growth, aggressiveness, and metastasis in HNSCC. Therefore, exploring the
potential of chemokines and cytokines can aid in developing novel therapeutic approaches
for the treatment of HNSCC. The use of chemokine receptor antagonists or inhibitors
and anti-chemokine antibodies can also serve as an adjuvant chemotherapy alternative
in HNSCC. As mentioned above, the CXCL11/CXCL12/CXCR4/CXCR7 axis is the most
studied chemokines system in HNSCC, and it can serve as an important therapeutic target.
In addition, CCL19/CCR7, CCL5/CCR5, and CCL2/CCR2 axis are important targets for
therapeutic intervention and would help improve HNSCC outcomes. Studies highlighting
the contribution of individual pathways and their predominance in response to a particular
mutation will help in achieving an optimum therapeutic outcome in HNSCC.

Moreover, IFN-γ and IL-7 can be used as risk markers in neck metastasis due to their
downregulation, specifically in HNSCC cases with nodal metastasis [175]. As IFN has
been found to exhibit anti-proliferative properties, it can be used as an immunomodulatory
agent. Another immunotherapy approach for the treatment of HNSCC is the application of
recombinant cytokines which can induce a targeted manipulation of the immune system.
Stimulation of immune cells that can alter the cytokine profile in HNSCC and diminish its
immunosuppressive effects is another interesting approach. Typically, delay in diagnosing
HNSCC requires surgical treatment with the combination of radio- or chemotherapy. In
this context, salivary cytokine can serve as diagnostic biomarker and predict CRT outcome
in HNSCC [224]. Furthermore, elevated levels of IL-6, IL-8, VEGF, HGF, and GRO-1 found
in HNSCC patients with poor survival indicate that targeting this pathway could be of
therapeutic significance [225]. Moreover, IL-15 can act as a therapeutic target in HNSCC as
is reported to be a powerful stimulator of NK and CD8+ T cell function. Recently, a phase
I clinical trial was conducted to determine the maximum tolerable dose of recombinant
human IL-15 (rhIL15) in patients with advanced solid tumors including HNSCC [124].
Although the clinical trial showed no objective clinical responses, few patients were found
to show disease stabilization after IL-15 administration [124]. Another strategy for restoring
antitumor immune functions in HNSCC is the use of a primary-cell-derived biologic known
as IRX-2. IRX-2 is a natural cytokine biologic derived from peripheral blood mononuclear
cells (PBMCs) that contain active components such as IL-2, IL-1β, TNF-α, and IFN-γ [226].
IRX-2 helps overcome tumor-mediated immunosuppression by acting on multiple immune
cells such as DCs, NK, and T cells. Several promising phase I and phase II clinical trials
have been conducted on IRX-2, thus suggesting that it can be used as an immunotherapy
target for the treatment of HNSCC as well as other malignancies [226]. Therefore, in the
future, cytokine-based immunotherapies must focus on combining strategies/schemes
that enhance antitumor responses and suppress protumorigenic immune cells. Moreover,
new approaches such as vector delivery or modified recombinant proteins can improve
cytokine targeting and enhance the efficacy of cytokine-based immunotherapies in can-
cer [227]. In conclusion, chemokines and cytokines are the essential players for HNSCC
pathogenesis and targeting their complex networks could become therapeutic strategies
explicitly targeting HNSCC.
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