510 research outputs found

    Nitrophily in relation to nitrification

    Get PDF
    This article does not have an abstract

    Relic density of wino-like dark matter in the MSSM

    Full text link
    The relic density of TeV-scale wino-like neutralino dark matter in the MSSM is subject to potentially large corrections as a result of the Sommerfeld effect. A recently developed framework enables us to calculate the Sommerfeld-enhanced relic density in general MSSM scenarios, properly treating mixed states and multiple co-annihilating channels as well as including off-diagonal contributions. Using this framework, including on-shell one-loop mass splittings and running couplings and taking into account the latest experimental constraints, we perform a thorough study of the regions of parameter space surrounding the well known pure-wino scenario: namely the effect of sfermion masses being non-decoupled and of allowing non-negligible Higgsino or bino components in the lightest neutralino. We further perform an investigation into the effect of thermal corrections and show that these can safely be neglected. The results reveal a number of phenomenologically interesting but so far unexplored regions where the Sommerfeld effect is sizeable. We find, in particular, that the relic density can agree with experiment for dominantly wino neutralino dark matter with masses ranging from 1.7 to beyond 4 TeV. In light of these results the bounds from Indirect Detection on wino-like dark matter should be revisited.Comment: 49 pages, 15 figure

    Neutralino Decays in the Complex MSSM at One-Loop: a Comparison of On-Shell Renormalization Schemes

    Get PDF
    We evaluate two-body decay modes of neutralinos in the Minimal Supersymmetric Standard Model with complex parameters (cMSSM). Assuming heavy scalar quarks we take into account all two-body decay channels involving charginos, neutralinos, (scalar) leptons, Higgs bosons and Standard Model gauge bosons. The evaluation of the decay widths is based on a full one-loop calculation including hard and soft QED radiation. Of particular phenomenological interest are decays involving the Lightest Supersymmetric Particle (LSP), i.e. the lightest neutralino, or a neutral or charged Higgs boson. For the chargino/neutralino sector we employ two different renormalization schemes, which differ in the treatment of the complex phases. In the numerical analysis we concentrate on the decay of the heaviest neutralino and show the results in the two different schemes. The higher-order corrections of the heaviest neutralino decay widths involving the LSP can easily reach a level of about 10-15%, while the corrections to the decays to Higgs bosons are up to 20-30%, translating into corrections of similar size in the respective branching ratios. The difference between the two schemes, indicating the size of unknown two-loop corrections, is less than order(0.1%). These corrections are important for the correct interpretation of LSP and Higgs production at the LHC and at a future linear e+e- collider. The results will be implemented into the Fortran code FeynHiggs.Comment: 49 pages, 27 figures, typos corrected. arXiv admin note: substantial text overlap with arXiv:1112.0760, arXiv:1111.7289, arXiv:1204.400

    Macroscopic Quantum Tunnelling in Rotating Bose-Einstein Condensates

    Full text link
    In this paper we investigate the macroscopic quantum tunnelling and the phase coherence property of the rotating Bose-Einstein condensates in both static and dynamic cases by using the mean field theory.Comment: 10 pages, 1 figure, submitted to Phys.Rev.

    Quantized Orbits and Resonant Transport

    Full text link
    A tight binding representation of the kicked Harper model is used to obtain an integrable semiclassical Hamiltonian consisting of degenerate "quantized" orbits. New orbits appear when renormalized Harper parameters cross integer multiples of π/2\pi/2. Commensurability relations between the orbit frequencies are shown to correlate with the emergence of accelerator modes in the classical phase space of the original kicked problem. The signature of this resonant transport is seen in both classical and quantum behavior. An important feature of our analysis is the emergence of a natural scaling relating classical and quantum couplings which is necessary for establishing correspondence.Comment: REVTEX document - 8 pages + 3 postscript figures. Submitted to Phys.Rev.Let

    Time-dependent tunneling of Bose-Einstein condensates

    Get PDF
    The influence of atomic interactions on time-dependent tunneling processes of Bose-Einstein condensates is investigated. In a variety of contexts the relevant condensate dynamics can be described by a Landau-Zener equation modified by the appearance of nonlinear contributions. Based on this equation it is discussed how the interactions modify the tunneling probability. In particular, it is shown that for certain parameter values, due to a nonlinear hysteresis effect, complete adiabatic population transfer is impossible however slowly the resonance is crossed. The results also indicate that the interactions can cause significant increase as well as decrease of tunneling probabilities which should be observable in currently feasible experiments.Comment: 8 pages, 5 figure

    Two-Body Random Ensembles: From Nuclear Spectra to Random Polynomials

    Full text link
    The two-body random ensemble (TBRE) for a many-body bosonic theory is mapped to a problem of random polynomials on the unit interval. In this way one can understand the predominance of 0+ ground states, and analytic expressions can be derived for distributions of lowest eigenvalues, energy gaps, density of states and so forth. Recently studied nuclear spectroscopic properties are addressed.Comment: 8 pages, 4 figures. To appear in Physical Review Letter

    Complete Anatomy of B -> K*ll and its angular distribution

    Full text link
    We present a complete and optimal set of observables for the exclusive 4-body B meson decay B -> K*(->K pi) l+l- in the low dilepton mass region, that contains a maximal number of clean observables. This basis of observables is built in a systematic way. We show that all the previously defined observables and any observable that one can construct, can be expressed as a function of this basis. This set of observables contains all the information that can be extracted from the angular distribution in the cleanest possible way. We provide explicit expressions for the full and the uniangular distributions in terms of this basis. The conclusions presented here can be easily extended to the large-q^2 region. We study the sensitivity of the observables to right-handed currents and scalars. Finally, we present for the first time all the symmetries of the full distribution including massive terms and scalar contributions.Comment: 37 pages, 12 Figures. Corrected typo in Eqs. (29) and (44). Results and conclusions unchange

    Bayesian Fit of Exclusive b→sℓˉℓb \to s \bar\ell\ell Decays: The Standard Model Operator Basis

    Full text link
    We perform a model-independent fit of the short-distance couplings C7,9,10C_{7,9,10} within the Standard Model set of b→sγb\to s\gamma and b→sℓˉℓb\to s\bar\ell\ell operators. Our analysis of B→K∗γB \to K^* \gamma, B→K(∗)ℓˉℓB \to K^{(*)} \bar\ell\ell and Bs→μˉμB_s \to \bar\mu\mu decays is the first to harness the full power of the Bayesian approach: all major sources of theory uncertainty explicitly enter as nuisance parameters. Exploiting the latest measurements, the fit reveals a flipped-sign solution in addition to a Standard-Model-like solution for the couplings CiC_i. Each solution contains about half of the posterior probability, and both have nearly equal goodness of fit. The Standard Model prediction is close to the best-fit point. No New Physics contributions are necessary to describe the current data. Benefitting from the improved posterior knowledge of the nuisance parameters, we predict ranges for currently unmeasured, optimized observables in the angular distributions of B→K∗(→Kπ) ℓˉℓB\to K^*(\to K\pi)\,\bar\ell\ell.Comment: 42 pages, 8 figures; v2: Using new lattice input for f_Bs, considering Bs-mixing effects in BR[B_s->ll]. Main results and conclusion unchanged, matches journal versio

    Damped Bloch oscillations of cold atoms in optical lattices

    Full text link
    The paper studies Bloch oscillations of cold neutral atoms in the optical lattice. The effect of spontaneous emission on the dynamics of the system is analyzed both analytically and numerically. The spontaneous emission is shown to cause (i) the decay of Bloch oscillations with the decrement given by the rate of spontaneous emission and (ii) the diffusive spreading of the atoms with a diffusion coefficient depending on {\em both} the rate of spontaneous emission and the Bloch frequency.Comment: 10 pages, 8 figure
    • …
    corecore