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We evaluate two-body decay modes of neutralinos in the minimal supersymmetric Standard Model with

complex parameters. Assuming heavy scalar quarks, we take into account all two-body decay channels

involving charginos, neutralinos, (scalar) leptons, Higgs bosons and Standard Model gauge bosons. The

evaluation of the decay widths is based on a full one-loop calculation including hard and soft QED

radiation. Of particular phenomenological interest are decays involving the lightest supersymmetric

particle (LSP), i.e., the lightest neutralino, or a neutral or charged Higgs boson. For the chargino/

neutralino sector we employ two different renormalization schemes, which differ in the treatment of the

complex phases. In the numerical analysis, we concentrate on the decay of the heaviest neutralino and

show the results in the two different schemes. The higher-order corrections of the heaviest neutralino

decay widths involving the LSP can easily reach a level of about 10–15%, while the corrections to the

decays to Higgs bosons can be up to 20–30%, translating into corrections of similar size in the respective

branching ratios. The difference between the two schemes, indicating the size of unknown two-loop

corrections, is less thanOð0:1%Þ. These corrections are important for the correct interpretation of LSP and

Higgs production at the LHC and at a future linear eþe� collider. The results will be implemented into the

Fortran code FeynHiggs.
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I. INTRODUCTION

One of the important tasks at the LHC is to search for
physics beyond the Standard Model (SM), where the mini-
mal supersymmetric Standard Model (MSSM) [1] is one of
the leading candidates.

Two related important tasks are investigating the mecha-
nism of electroweak symmetry breaking, as well as the
production and measurement of the properties of cold dark
matter (CDM). The Higgs searches currently ongoing at
the LHC (and previously carried out at the Tevatron [2] and
LEP [3]) address both those goals. The spectacular discov-
ery of a Higgs-like particle with a mass around MH ’
125 GeV, which has just been announced by ATLAS and
CMS [4], marks a milestone of an effort that has been
ongoing for almost half a century and opens a new era of
particle physics. Both ATLAS and CMS reported a clear
excess around �125 GeV in the two-photon channel, as

well as in the ZZð�Þ channel, whereas the analyses in other
channels have a lower mass resolution and at present are
largely less mature. The combined sensitivity in each of the
experiments reaches about �5�. The discovery is consis-
tent with the predictions for the Higgs boson in the SM [5],
as well as with the predictions for the lightest Higgs boson

in the MSSM [5,6]. The latter model also offers a natural
candidate for CDM, the lightest supersymmetric particle
(LSP), i.e., the lightest neutralino, ~�0

1 [7]. Supersymmetry

(SUSY) predicts two scalar partners for all SM fermions as
well as fermionic partners to all SM bosons. Contrary to
the case of the SM, in the MSSM two Higgs doublets are
required. This results in five physical Higgs bosons instead
of the single Higgs boson in the SM. These are the light and
heavy CP -even Higgs bosons, h and H, the CP -odd Higgs
boson, A, and the charged Higgs bosons,H�. In the MSSM
with complex parameters (cMSSM), the three neutral
Higgs bosons mix [8–11], giving rise to the CP -mixed
states h1, h2, h3.
If SUSY is realized in nature and the scalar quarks and/

or the gluino are in the kinematic reach of the LHC, it
is expected that these strongly interacting particles are
copiously produced. The primarily produced strongly in-
teracting particles subsequently decay via cascades to SM
particles and (if R-parity conservation is assumed, as we
do) the LSP. One step in these decay chains is often the
decay of a neutralino, ~�0

2;3;4, to a SM particle and the LSP,

or as a competing process, the neutralino decay to another
SUSY particle accompanied by a SM particle. Also,
neutral and charged Higgs bosons are expected to be
produced this way. Via these decays, some characteristics
of the LSP and/or Higgs bosons can be measured; see e.g.,
Refs. [12,13] and references therein. At any future eþe�
collider (such as ILC or CLIC), a precision determination
of the properties of the observed particles is expected
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[14,15]. (For combined LHC/ILC analyses and further
prospects, see Ref. [16]) Thus, if kinematically accessible,
the pair production of neutralinos with a subsequent decay
to the LSP and/or Higgs bosons can yield important infor-
mation about the lightest neutralino and the Higgs sector of
the model.

In order to yield a sufficient level of accuracy, at least
one-loop corrections to the various neutralino decay modes
have to be considered. In this paper we evaluate full one-
loop corrections to neutralino decays in the cMSSM. If
scalar quarks are sufficiently heavy (as in many GUT-based
models such as CMSSM, GMSB or AMSB; see, for in-
stance, Ref. [17]), a neutralino decay to a quark and a scalar
quark is kinematically forbidden. Assuming heavy squarks,
we calculate the full one-loop correction to all two-body
decay modes (which are nonzero at the tree-level):

�ð~�0
i ! ~��

j H
�Þ ði ¼ 2; 3; 4; j ¼ 1; 2Þ; (1)

�ð~�0
i ! ~��

j W
�Þ ði ¼ 2; 3; 4; j ¼ 1; 2Þ; (2)

�ð~�0
i ! ~�0

jhkÞ ði ¼ 2; 3; 4; j < i; k ¼ 1; 2; 3Þ; (3)

�ð~�0
i ! ~�0

jZÞ ði ¼ 2; 3; 4; j < iÞ; (4)

�ð~�0
i !‘�~‘�k Þ ði¼2;3;4;‘¼e;�;�;k¼1;2Þ; (5)

�ð~�0
i ! ��‘~�‘=�‘~�

y
‘ Þ ði ¼ 2; 3; 4; ‘ ¼ e;�; �Þ: (6)

The total width is defined as the sum of the channels in
Eqs. (1)–(6), where we neglect the decays to colored
particles, as these will not be kinematically allowed for
the scenarios considered in the numerical analysis. It
should be noted that several modes are closed for nearly
the whole MSSM parameter space due to the structure
of the chargino and neutralino mass matrices (see below).
Therefore, while we have evaluated analytically all neu-
tralino decays, in our numerical analysis we will concen-
trate on the decays of the heaviest neutralino, ~�0

4.

As explained above, we are especially interested in the
branching ratios (BRs) of the decays involving a Higgs
boson [Eqs. (1) and (3)] as part of an evaluation of a
Higgs production cross section, and/or involving the LSP
[Eqs. (3) and (4)] as part of the measurement of CDM
properties at the LHC, the ILC or CLIC. Consequently, it
is not necessary to investigate three- or four-body decay
modes. These only play a significant role once the two-body
modes are kinematically forbidden, and thus the relevant
BRs are zero. The same applies to two-body decay modes
that exist only at the one-loop level, such as ~�0

i ! ~�0
j� (see,

for instance, Ref. [18]). While this channel is ofOð�2Þ, the
size of the one-loop corrections to Eqs. (1) to (6) is ofOð�Þ.
We have numerically verified that the contribution of
�ð~�0

i ! ~�0
j�Þ to the total width is completely negligible.

Tree-level results for the neutralino decays in the MSSM
were presented in Refs. [18–20]. The code SDECAY [21]

includes all two-body decays of neutralinos at tree level.
Tree-level studies of neutralino decays have shown that
they could be invaluable in distinguishing between differ-
ent patterns of supersymmetry breaking [22], as well as in
detecting CP -violating effects at a linear collider [23–28]
or a muon collider [29]. Higher-order corrections to neu-
tralino decays have been evaluated in various analyses over
the last decade in the real MSSM, for which the on-shell
renormalization of the chargino/neutralino sector was de-
veloped in Refs. [30–39]. In Ref. [40], three-body decays
into the LSP and quarks were calculated, including correc-
tions to the masses of third-generation fermions and SUSY
particles. In Ref. [36], decays of the next-to-lightest neu-
tralino to the lightest neutralino and two leptons were
calculated at one loop. The one-loop electroweak correc-
tions to all two-body decay channels of neutralinos, eval-
uated in an on-shell renormalization scheme, have been
implemented in the code SloopS [41]. Radiative correc-
tions to a number of neutralino decay channels were also
recently studied in Ref. [42] for the case of real parameters.
A full one-loop calculation of the electroweak corrections
to the partial width of the decay of a neutralino into a
chargino and a W boson in the MSSM and NMSSM is
presented in Ref. [43], and made available with the code
CNNDecays. In the cMSSM, the on-shell renormalization
of the chargino/neutralino sector was first studied in
Ref. [37] and subsequently in Ref. [44], and decays of
type �ð~�0

i ! ~��
j H

�Þ were studied in Refs. [37,38]. The

approach to the renormalization of the complex parameters
differs slightly from that used in Refs. [45,46], where
chargino decays in the cMSSM at the one-loop level
were analyzed. One important part of this work consists
of a comparison of these two schemes.
In this paper, we present for the first time a full one-loop

calculation for all nonhadronic two-body decay channels
of a neutralino, taking into account soft and hard QED
radiation, simultaneously and consistently evaluated in the
cMSSM. The calculation is based on two independent
setups that differ slightly in the inclusion of higher-order
corrections to quantities used in one-loop corrections, i.e.,
in effects beyond the one-loop level. The two setups fur-
thermore employ renormalization schemes in the chargino/
neutralino sector that differ in their treatment of complex
phases [37,38,45,46]. The numerical results are shown for
both setups, and the (small) differences indicate the size of
theoretical uncertainties beyond the one-loop level.
The paper is organized as follows: In Sec. II, we review

the relevant sectors of the cMSSM and give all the details
about the two different renormalization schemes in the
chargino/neutralino sector. Details about the calculation
can be found in Sec. III. The numerical results for all decay
channels are presented in Sec. IV. The conclusions can be
found in Sec. V. The evaluation of the branching ratios of
the neutralinos will be implemented into the Fortran code
FeynHiggs [47–50].
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II. THE RELEVANT SECTORS OF THE
COMPLEX MSSM

All channels [Eqs. (1)–(6)] are calculated at the one-loop
level, including real QED radiation. This requires the
simultaneous renormalization of several sectors of the
cMSSM. In the following subsections we introduce our
notation for these sectors. Details about the two renormal-
ization schemes used in the chargino/neutralino sector are
given. The renormalization of the other sectors can be
found in Refs. [45,46,51].

A. The chargino/neutralino sector of the cMSSM

While many details about the renormalization of the
cMSSM can already be found in Refs. [37,38,45,46], we
repeat here the most relevant aspects in order to give a
complete picture and to facilitate the comparison between
the two employed renormalization schemes. The chargino/
neutralino sector contains two soft SUSY-breaking gau-
gino mass parameters M1 and M2 corresponding to the
bino and the wino fields, respectively, as well as the Higgs
superfield mixing parameter �, which, in general, can be
complex. Since not all the possible phases of the cMSSM
Lagrangian are physical, it is possible (without loss of
generality) to choose some parameters to be real. This
applies in particular to one out of the three parameters
M1, M2, and M3, the gluino mass parameter. For the
numerical analysis in Sec. IV, we choose M2 to be real;
however, for the renormalization scheme I introduced be-
low [45,46], we do not make such an assumption, and the
analytical derivation of the renormalization constants is
performed for a complex M2, discussed further in Sec. IV.

The starting point for the renormalization procedure of
the chargino/neutralino sector is the part of the Fourier
transformed MSSM Lagrangian which is bilinear in the
chargino and neutralino fields:

Lbil
~��;~�0 ¼ �~��

i 6p!� ~��
i þ �~��

i 6p!þ ~��
i

� �~��
i ½V�X>Uy�ij!� ~��

j � �~��
i ½UX�V>�ij!þ ~��

j

þ1

2
ð �~�0

k 6p!� ~�0
k;þ �~�0

k 6p!þ ~�0
k� �~�0

k½N�YNy�kl!� ~�0
l

� �~�0
k½NY�N>�kl!þ ~�0

l Þ; (7)

already expressed in terms of the chargino and neutralino
mass eigenstates ~��

i and ~�0
k, respectively, and i, j ¼ 1, 2

and k, l ¼ 1, 2, 3, 4. The mass eigenstates can be deter-
mined via unitary transformations where the correspond-
ing matrices diagonalize the chargino and neutralino mass
matrix, X and Y, respectively.
In the chargino case, two 2� 2 matrices U and V are

necessary for the diagonalization of the chargino mass
matrix X:

M~�� ¼ V�X>Uy ¼
m~��

1
0

0 m~��
2

 !
with

X ¼ M2

ffiffiffi
2

p
sin�MWffiffiffi

2
p

cos�MW �

 !
; (8)

where M~�� is the diagonal mass matrix with the chargino

masses m~��
1
, m~��

2
as entries, which are determined as the

(real and positive) singular values ofX. The singular-value
decomposition of X also yields results for U and V. Using
the transformation matrices U and V, the interaction
Higgsino and wino spinors ~H�

1 ,
~Hþ
2 and ~W�, which are

two component Weyl spinors, can be transformed into the
mass eigenstates

~��
i ¼ c L

i

c R
i

 !
with c L

i ¼ Uij

~W�

~H�
1

 !
j

and

c R
i ¼ Vij

~Wþ

~Hþ
2

 !
j

; (9)

where the ith mass eigenstate can be expressed in terms of
either the Weyl spinors c L

i and c R
i or the Dirac spinor ~��

i .
In the neutralino case, as the neutralino mass matrix

Y is symmetric, one 4� 4 matrix is sufficient for the
diagonalization

M ~�0 ¼ N�YNy ¼ diagðm~�0
1
; m~�0

2
; m~�0

3
; m~�0

4
Þ (10)

with

Y ¼

M1 0 �MZsw cos� MZsw sin�

0 M2 MZcw cos� �MZcw sin�

�MZsw cos� MZcw cos� 0 ��

MZsw sin� �MZcw sin� �� 0

0BBBBB@
1CCCCCA: (11)

MZ and MW are the masses of the Z and W boson, cw ¼
MW=MZ and sw ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2w
p

. The unitary 4� 4 matrix N
and the physical neutralino (tree-level) massesm~�0

k
(k ¼ 1,

2, 3, 4) result from a numerical Takagi factorization [52] of
Y. Starting from the original bino/wino/higgsino basis, the

mass eigenstates can be determined with the help of the
transformation matrix N,

~� 0
k ¼ c 0

k
�c 0
k

 !
with c 0

k ¼Nklð ~B0; ~W0; ~H0
1; ~H

0
2Þ>l ; (12)
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where c 0
k denotes the two-component Weyl spinor and ~�0

k

the four-component Majorana spinor of the kth neutralino
field.

Concerning the renormalization of this sector,
we implement two prescriptions that differ in the treatment
of the complex phases. The first prescription is based
on Refs. [46,53], while the second one is based on
Refs. [37,38,44,54]. We will emphasize the points where
the two schemes deviate from each other.

The following replacements of the parameters and the
fields are performed according to the multiplicative renor-
malization procedure, which is formally identical for the
two setups:

M1 ! M1 þ 	M1; (13)

M2 ! M2 þ 	M2; (14)

� ! �þ 	�; (15)

!� ~��
i !

�
1þ 1

2
	ZL

~��

�
ij
!� ~��

j ði; j ¼ 1; 2Þ; (16)

!þ ~��
i !

�
1þ 1

2
	ZR

~��

�
ij
!þ ~��

j ði; j ¼ 1; 2Þ; (17)

!� ~�0
k!

�
1þ1

2
	Z~�0

�
kl
!� ~�0

l ðk;l¼1;2;3;4Þ; (18)

!þ ~�0
k!

�
1þ1

2
	Z�

~�0

�
kl
!þ ~�0

l ðk;l¼1;2;3;4Þ: (19)

It should be noted that the parameter counterterms are
complex counterterms which each need two renormaliza-
tion conditions to be fixed (except for 	M2, which in
scheme II is real). The transformation matrices are not
renormalized, so that, using the notation of replacing a
matrix with its renormalized matrix and a counterterm
matrix,

X ! Xþ 	X; (20)

Y ! Y þ 	Y; (21)

with

	X ¼ 	M2

ffiffiffi
2

p
	ðMW sin�Þffiffiffi

2
p

	ðMW cos�Þ 	�

 !
; (22)

	Y ¼

	M1 0 �	ðMZsw cos�Þ 	ðMZsw sin�Þ
0 	M2 	ðMZcw cos�Þ �	ðMZcw sin�Þ

�	ðMZsw cos�Þ 	ðMZcw cos�Þ 0 �	�

	ðMZsw sin�Þ �	ðMZcw sin�Þ �	� 0

0BBBBB@
1CCCCCA; (23)

the replacements of the matrices M~�� and M~�0 can be
expressed as

M ~�� ! M~�� þ 	M~�� ¼ M~�� þ V�	X>Uy; (24)

M ~�0 ! M~�0 þ 	M~�0 ¼ M~�0 þN�	YNy: (25)

For convenience, we decompose the self-energies into
left- and right-handed vector and scalar coefficients via

½�~�ðp2Þ�nm ¼ 6p!�½�L
~�ðp2Þ�nm þ 6p!þ½�R

~�ðp2Þ�nm
þ!�½�SL

~� ðp2Þ�nm þ!þ½�SR
~� ðp2Þ�nm: (26)

Now the coefficients of the renormalized self-energies are
given by (i, j ¼ 1, 2; k, l ¼ 1, 2, 3, 4)h

�̂
L
~��ðp2Þ

i
ij
¼ ½�L

~��ðp2Þ�ij þ 1

2
½	ZL

~�� þ 	ZLy
~���ij; (27)

h
�̂

R
~��ðp2Þ

i
ij
¼ ½�R

~��ðp2Þ�ij þ 1

2
½	ZR

~�� þ 	ZRy
~���ij; (28)

h
�̂

SL
~��ðp2Þ

i
ij
¼ ½�SL

~��ðp2Þ�ij �
�
1

2
	ZRy

~��M~��

þ 1

2
M~��	ZL

~�� þ 	M~��

�
ij
; (29)

h
�̂

SR
~��ðp2Þ

i
ij
¼ ½�SR

~��ðp2Þ�ij �
�
1

2
	ZLy

~��My
~��

þ 1

2
My

~��	ZR
~�� þ 	My

~��

�
ij
; (30)

h
�̂

L
~�0ðp2Þ

i
kl
¼ ½�L

~�0ðp2Þ�kl þ 1

2
½	Z~�0 þ 	Zy

~�0�kl; (31)

h
�̂

R
~�0ðp2Þ

i
kl
¼ ½�R

~�0ðp2Þ�kl þ 1

2
½	Z�

~�0 þ 	Z>
~�0�kl; (32)

h
�̂

SL
~�0 ðp2Þ

i
kl
¼ ½�SL

~�0 ðp2Þ�kl �
�
1

2
	Z>

~�0M~�0

þ 1

2
M~�0	Z~�0 þ 	M~�0

�
kl
; (33)
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h
�̂

SR
~�0 ðp2Þ

i
kl
¼ ½�SR

~�0 ðp2Þ�kl �
�
1

2
	Zy

~�0M
y
~�0

þ 1

2
My

~�0	Z
�
~�0 þ 	My

~�0

�
kl
: (34)

Instead of choosing the three complex parameters M1,
M2 and � to be independent parameters, we impose on-
shell conditions for the two chargino masses and the mass
of the lightest neutralino (however, we do this slightly
differently in the two schemes; see below) and extract
the expressions for the counterterms of M1, M2 and �,
accordingly. It was shown in Refs. [37,44,54] that for
numerically stable results, one bino-, wino-, or Higgsino-
like particle should be chosen on shell. Further, in a recent
analysis [39] it was emphasized that in the case that two
chargino masses and one neutralino mass are on-shell, the
mass of the most bino-like neutralino should be chosen in
order to ensure numerical stability. In Ref. [41], the prob-
lem of large unphysical contributions due to a nonbino-like
lightest neutralino is also discussed. In our numerical setup
(see Sec. IV), the lightest neutralino is always rather bino-
like. On the other hand, it would be trivial to change our
prescription from the lightest neutralino being on shell to
any other neutralino, ensuring that a neutralino with a large
bino component is renormalized on shell. In Ref. [39], it
was also suggested that the numerically most stable result
is obtained via the renormalization of one chargino and two
neutralinos. However, in our approach, this choice would
lead to IR divergences, since the chargino mass changes
(from the tree-level mass to the one-loop pole mass) by a
finite shift due to the renormalization procedure. Using the
shifted mass for the external particles and the tree-level
mass for internal particles results in IR divergences. On the
other hand, in general, inserting the shifted chargino mass
internally yields UV divergences. Consequently, we stick
to our choice of imposing on-shell conditions for the two
charginos and one neutralino.

As stated before, the numerical analysis is carried out
using two different renormalization schemes. It should be
noted that the differences arise in the renormalization of
the parameters, but the expressions for the field renormal-
ization constants are identical. This means that only the
renormalization of the phases of the complex parameters
differs. Therefore, the schemes are identical in the real
MSSM. We will briefly describe the two schemes in the
following subsections, making an attempt to highlight the
differences.

Scheme I [45,46]: The on-shell conditions in this scheme
read�hfRe�̂~��ðpÞ

i
ii
~��
i ðpÞ

�
jp2¼m2

~��
i

¼ 0 ði ¼ 1; 2Þ; (35)

�hfRe�̂~�0ðpÞ
i
11
~�0
1ðpÞ

�
jp2¼m2

~�0
1

¼ 0: (36)

These conditions can be rewritten in terms of six equations
defining six real parameters or three complex ones:

fRehm~��
i

�
�̂

L
~��
�
m2

~��
i

�
þ �̂

R
~��
�
m2

~��
i

��
þ �̂

SL
~��
�
m2

~��
i

�
þ �̂

SR
~��
�
m2

~��
i

�i
ii
¼ 0;

(37)

fRehm~��
i

�
�̂

L
~��
�
m2

~��
i

�
� �̂

R
~��
�
m2

~��
i

��
� �̂

SL
~��
�
m2

~��
i

�
þ �̂

SR
~��
�
m2

~��
i

�i
ii
¼ 0;

(38)

fRehm~�0
1

�
�̂

L
~�0

�
m2

~�0
1

�
þ �̂

R
~�0

�
m2

~�0
1

��
þ �̂

SL
~�0

�
m2

~�0
1

�
þ �̂

SR
~�0

�
m2

~�0
1

�i
11

¼ 0; (39)

fRe½m~�0
1
ð�̂L

~�0ðm2
~�0
1

Þ � �̂
R
~�0ðm2

~�0
1

ÞÞ � �̂
SL
~�0 ðm2

~�0
1

Þ
þ �̂

SR
~�0 ðm2

~�0
1

Þ�11 ¼ 0: (40)

Equations (38) and (40) are related to the axial and axial-
vector components of the renormalized self energy, and
therefore the lhs vanishes in the case of real couplings.
Therefore, in the real MSSM only Eqs. (37) and (39)
remain. It should be noted that since the lightest neutralino
is stable, there are no absorptive contributions from its self-

energy, and fRe can be dropped from Eqs. (36), (39), and
(40). We retain it here in order to allow for these on-shell
conditions to be generalized to other neutralinos.
For the further determination of the field renormaliza-

tion constants, applicable to both schemes, we also impose

lim
p2!m2

~��
i

0@ð6pþm~��
i
Þ
hfRe�̂~��ðpÞ

i
ii

p2 �m2
~��
i

~��
i ðpÞ

1A ¼ 0

ði ¼ 1; 2Þ; (41)

lim
p2!m2

~�0
k

0@ð6pþm~�0
k
Þ
hfRe�̂~�0ðpÞ

i
kk

p2 �m2
~�0
k

~�0
kðpÞ

1A ¼ 0

ðk ¼ 1; 2; 3; 4Þ; (42)

which, together with Eqs. (38) and (40), lead to the follow-
ing set of equations (for i ¼ 1, 2; k ¼ 1):

fRe�1
2
ð�̂L

~��ðm2
~��
i
Þ þ �̂

R
~��ðm2

~��
i
ÞÞ þm2

~��
i
ð�̂L0

~��ðm2
~��
i
Þ

þ �̂
R0
~��ðm2

~��
i
ÞÞ þm~��

i
ð�̂SL0

~�� ðm2
~��
i
Þ þ �̂

SR0
~�� ðm2

~��
i
ÞÞ
�
ii
¼ 0;

(43)

fRe½�̂L
~��ðm2

~��
i
Þ � �̂

R
~��ðm2

~��
i
Þ�ii ¼ 0; (44)
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fRe�1
2
ð�̂L

~�0ðm2
~�0
1

Þþ�̂
R
~�0ðm2

~�0
1

ÞÞþm2
~�0
1

ð�̂L0
~�0ðm2

~�0
1

Þ

þ�̂
R0
~�0ðm2

~�0
1

ÞÞþm~�0
1
ð�̂SL0

~�0 ðm2
~�0
1

Þþ�̂
SR0
~�0 ðm2

~�0
1

ÞÞ
�
11
¼0;

(45)

fRe½�̂L
~�0ðm2

~�0
1

Þ � �̂
R
~�0ðm2

~�0
1

Þ�11 ¼ 0; (46)

where we have used the shorthand �0ðm2Þ �
ð@�=@p2Þjp2¼m2 . It should be noted that Eq. (46) is already

fulfilled due to the Majorana nature of the neutralinos.
Inserting Eqs. (27)–(34) for the renormalized self-

energies in Eqs. (37)–(40) and solving for ½	M~���ii and
½	M~�0�11 results in

Re½	M~���ii ¼ 1

2
fRehm~��

i

�
�L

~��
�
m2

~��
i

�
þ �R

~��
�
m2

~��
i

��
þ�SL

~��
�
m2

~��
i

�
þ�SR

~��
�
m2

~��
i

�i
ii
; (47)

Im½	M~���ii ¼ i

2
fReh�SR

~��
�
m2

~��
i

�
� �SL

~��
�
m2

~��
i

�i
ii

� 1

2
m~��

i
Im
h
	ZL

~�� � 	ZR
~��
i
ii
; (48)

Re½	M~�0�11 ¼ 1

2
fRehm~�0

1

�
�L

~�0

�
m2

~�0
1

�
þ�R

~�0

�
m2

~�0
1

��
þ�SL

~�0

�
m2

~�0
1

�
þ �SR

~�0

�
m2

~�0
1

�i
11
; (49)

Im½	M~�0�11 ¼ i

2
fReh�SR

~�0

�
m2

~�0
1

�
��SL

~�0

�
m2

~�0
1

�i
11

�m~�0
1
Im
h
	Z~�0

i
11
; (50)

where we have used the relations in Eqs. (44) and (46).
Using Eqs. (22)–(25), these conditions lead to [53,55]

	M1 ¼ 1

ðN�
11Þ2

ð	 em~�0
1
� N�2

12	M2 þ 2N�
13N

�
14	�

þ 2N�
11½N�

13	ðMZsw cos�Þ � N�
14	ðMZsw sin�Þ�

� 2N�
12½N�

13	ðMZcw cos�Þ � N�
14	ðMZcw sin�Þ�Þ;

(51)

	M2 ¼ 1

2ðU�
11U

�
22V

�
11V

�
22�U�

12U
�
21V

�
12V

�
21Þ

�ð2U�
22V

�
22	 em~��

1
�2U�

12V
�
12	 em~��

2

þðU�
12U

�
21�U�

11U
�
22ÞV�

12V
�
22	ð

ffiffiffi
2

p
MW sin�Þ

þU�
12U

�
22ðV�

12V
�
21�V�

11V
�
22Þ	ð

ffiffiffi
2

p
MW cos�ÞÞ; (52)

	�¼ 1

2ðU�
11U

�
22V

�
11V

�
22�U�

12U
�
21V

�
12V

�
21Þ

�ð2U�
11V

�
11	 em~��

2
�2U�

21V
�
21	 em~��

1

þðU�
12U

�
21�U�

11U
�
22ÞV�

11V
�
21	ð

ffiffiffi
2

p
MW cos�Þ

þU�
11U

�
21ðV�

12V
�
21�V�

11V
�
22Þ	ð

ffiffiffi
2

p
MW sin�ÞÞ; (53)

where, combining Eqs. (47)–(50), we introduce the short-
hand notation

	 ~m~�0
1
¼ 1

2
fRehm~�0

1

�
�L

~�0

�
m2

~�0
1

�
þ�R

~�0

�
m2

~�0
1

��
þ 2�SL

~�0

�
m2

~�0
1

�i
11
; (54)

	 ~m~��
i
¼ 1

2
fRehm~��

i

�
�L

~��

�
m2

~��
i

�
þ �R

~��

�
m2

~��
i

��
þ 2�SL

~��

�
m2

~��
i

�i
ii
: (55)

Here we have already used Eqs. (73) and (76) (see below),
which fix the expressions for the imaginary parts of the
chargino and neutralino field renormalization constants

	ZL=R
~�� and 	Z~�0 , respectively.

Scheme II [37,38]: Here, on the other hand, it is the real
part of the corrections to the self-energies of the on-shell
particles that is required to vanish:�h

Re�̂~��ðpÞ
i
ii
~��
i ðpÞ

�
jp2¼m2

~��
i

¼ 0 ði ¼ 1; 2Þ; (56)

�h
Re�̂~�0ðpÞ

i
11
~�0
1ðpÞ

�
jp2¼m2

~�0
1

¼ 0: (57)

It should be noted that for the derivation of the field
renormalization constants, in order to ensure that the on-
shell propagator has only a scalar and vector part, we
impose the additional conditionsh

�̂
L
~�

�
m2

~�j
Þ
i
jj
¼
h
�̂

R
~�

�
m2

~�j

�i
jj
; (58)

h
�̂

SL
~�

�
m2

~�j

�i
jj
¼
h
�̂

SR
~�

�
m2

~�j

�i
jj
; (59)

with ~�j denoting either a chargino (with j ¼ 1, 2) or a

neutralino (with j ¼ 1; . . . ; 4). The first equation, relating
the vector coefficients, is automatically satisfied in the
cMSSM for both charginos and neutralinos. This means
that the conditions of Eqs. (44) and (46) that applied in
scheme I, describing the axial and axial-vector components
of the renormalized self-energy, are also satisfied in
scheme II. It should be noted that here, however, we have

dropped the fRe.1 On expanding Eqs. (56) and (57), in
analogy to Eqs. (37) and (39), we find

1See the discussion on absorptive contributions at the end of
this subsection.
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Re½m~��
i
ð�̂L

~��ðm2
~��
i
Þ þ �̂

R
~��ðm2

~��
i
ÞÞ þ �̂

SL
~��ðm2

~��
i
Þ

þ �̂
SR
~��ðm2

~��
i
Þ�ii ¼ 0; (60)

Re½m~�0
1
ð�̂L

~�0ðm2
~�0
1

Þ þ �̂
R
~�0ðm2

~�0
1

ÞÞ þ �̂
SL
~�0 ðm2

~�0
1

Þ
þ �̂

SR
~�0 ðm2

~�0
1

Þ�11 ¼ 0: (61)

We are left with three on-shell conditions for scheme II,
Eqs. (60) and (61). Therefore, one can only fix the renor-

malization constants2 ~	jM1j, ~	M2 (note that M2 is chosen

to be real) and ~	j�j, but not ~	’M1
or ~	
�, where ~	M1 ¼

~	jM1jei’M1 and ~	� ¼ ~	j�jei
� . This, however, is not a
problem, as it turns out that the phases ofM1 and� are UV
finite at one loop (see e.g., Ref. [37]) and need not be

renormalized at all, i.e., they can be set to zero, ~	’M1
¼

~	
� ¼ 0. It should be noted that ~	j�j, ~	jM1j, ~	M2 are

related to ~	M~�� and ~	M~�0 via Eqs. (22)–(25). Expressions

for these renormalization constants can then easily be
obtained by inserting Eqs. (27)–(34) for the renormalized
self-energies in Eqs. (60) and (61), resulting in (for details
see Refs. [37,38,44,54])

~	jM1j ¼ � 1

Reðe�i’M1N2
11ÞS

� ð½ReðU11V11ÞReðe�i
�U22V22Þ � Reðe�i
�U12V12ÞReðU21V21Þ�N1

þ ½2Reðe�i
�N13N14ÞReðU11V11Þ þ ReðN2
12ÞReðe�i
�U12V12Þ�C2

� ½ReðN2
12ÞReðe�i
�U22V22Þ þ 2Reðe�i
�N13N14ÞReðU21V21Þ�C1Þ; (62)

~	M2 ¼ 1

S
½Reðe�i
�U12V12ÞC2 � Reðe�i
�U22V22ÞC1�;

(63)

~	j�j ¼ � 1

S
½ReðU11V11ÞC2 � ReðU21V21ÞC1�; (64)

where we use the abbreviations

Ci � Re½m~��
i
½�L

~��ðm2
~��
i
Þ þ�R

~��ðm2
~��
i
Þ� þ �SL

~��ðm2
~��
i
Þ

þ�SR
~��ðm2

~��
i
Þ�ii � 2	ðMW sin�ÞReðUi2Vi1Þ

� 2	ðMW sin�ÞReðUi1Vi2Þ; (65)

Ni � Re½m~�0
i
½�L

~�0ðm2
~�0
i

Þ þ �R
~�0ðm2

~�0
i

Þ� þ �SL
~�0 ðm2

~�0
i

Þ
þ�SR

~�0 ðm2
~�0
i

Þ�ii þ 4	ðMZsw cos�ÞReðNi1Ni3Þ
� 4	ðMZcw cos�ÞReðNi2Ni3Þ
� 4	ðMZsw sin�ÞReðNi1Ni4Þ
þ 4	ðMZcw sin�ÞReðNi2Ni4Þ; (66)

S � 2½ReðU21V21ÞReðe�i
�U12V12Þ
� ReðU11V11ÞReðe�i
�U22V22Þ�: (67)

~	M~�� and ~	M~�0 are simply obtained by the replacements
	M1, 	M2, and 	� by, respectively, ~	M1, ~	M2, and ~	� in
Eqs. (20)–(25).

The following discussion of the neutralino mass shifts
and the field renormalization is applicable to both schemes.

Since the chargino masses m~��
1
, m~��

2
and the lightest

neutralino mass m~�0
1
have been chosen as independent pa-

rameters, the one-loop masses of the heavier neutralinos ~�0
i

(i ¼ 2, 3, 4) are obtained from the tree-level ones via the shifts

�m~�0
i
¼ � 1

2
Refm~�0

i
ð�̂L

~�0
i
ðm2

~�0
i

Þ þ �̂
R
~�0
i
ðm2

~�0
i

ÞÞ
þ �̂

SL
~�0
i
ðm2

~�0
i

Þ þ �̂
SR
~�0
i
ðm2

~�0
i

Þg: (68)

Where necessary, we distinguish the tree-level massm~�0
i

from the on-shell mass,

m̂ ~�0
i
¼ m~�0

i
þ�m~�0

i
: (69)

We use m̂~�0
i
for all externally appearing neutralino

masses, which includes the (on-shell) momentum in
the employed neutralino self-energies. In order to yield
UV-finite results, we use the tree-level values m~�0

i
for all

internally appearing neutralino masses in loop calculations.
Equations (43) and (45) define the real part of the

diagonal field renormalization constants of the chargino
fields and of the lightest neutralino field. By extending
Eq. (45) to apply also for k ¼ 2, 3, 4, we can generalize
the result for the diagonal field renormalization constants
of the lightest neutralino to the other neutralino fields.
The imaginary parts of the diagonal field renormaliza-

tion constants are still undefined. However, these can be
obtained using Eqs. (48) and (50), where the latter is
generalized to include k ¼ 2, 3, 4. Now in scheme I (or
scheme II), for the charginos and the lightest neutralino,
Eqs. (48) and (50) define the imaginary parts of ½	M~���ii
(or ½~	M~���ii) (i ¼ 1, 2) and ½	M~�0�11 (or ½~	M~�0�11) in
terms of the imaginary part of the field renormalization
constants. Therefore, these are simply set to zero [see
below Eqs. (73) and (76)], which is possible as all diver-
gences are absorbed by other counterterms.

2Here we adopt the notation ~	 for scheme II to distinguish the
renormalization constants from those in scheme I.
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The off-diagonal field renormalization constants are
fixed by the condition that

ð½fRe�̂~��ðpÞ�ij ~��
j ðpÞÞjp2¼m2

~��
j

¼ 0 ði; j ¼ 1; 2Þ; (70)

ð½fRe�̂~�0ðpÞ�kl ~�0
l ðpÞÞjp2¼m2

~�0
l

¼0 ðk;l¼1;2;3;4Þ: (71)

Finally, this yields for the field renormalization constants
[53] (where we now make the correct dependence on tree-
level and on-shell masses explicit)

Re½	ZL=R
~�� �ii ¼ �fRe½�L=R

~�� ðm2
~��
i
Þ þm2

~��
i
ð�L0

~��ðm2
~��
i
Þ

þ �R0
~��ðm2

~��
i
ÞÞ þm~��

i
ð�SL0

~�� ðm2
~��
i
Þ

þ �SR0
~�� ðm2

~��
i
ÞÞ�ii; (72)

Im½	ZL=R
~�� �ii ¼ � 1

m~��
i

�
i

2
fRef�SR

~��ðm2
~��
i
Þ ��SL

~��ðm2
~��
i
Þg

� Im	M~��

�
ii

:¼SI 0; (73)

½	ZL=R
~�� �ij ¼ 2

m2
~��
i
�m2

~��
j

fRe½m2
~��
j
�L=R

~�� ðm2
~��
j
Þ

þm~��
i
m~��

j
�R=L

~�� ðm2
~��
j
Þ þm~��

i
�SL=SR

~�� ðm2
~��
j
Þ

þm~��
j
�SR=SL

~�� ðm2
~��
j
Þ �m~��

i=j
	M~��

�m~��
j=i
	My

~���ij; (74)

Re½	Z~�0�kk ¼ �fRe½�L
~�0ðm̂2

~�0
k

Þ þm2
~�0
k

ð�L0
~�0ðm̂2

~�0
k

Þ
þ �R0

~�0ðm̂2
~�0
k

ÞÞ þm~�0
k
ð�SL0

~�0 ðm̂2
~�0
k

Þ
þ �SR0

~�0 ðm̂2
~�0
k

ÞÞ�kk; (75)

Im½	Z~�0�kk ¼ 1

m~�0
k

�
i

2
fRef�SR

~�0 ðm̂2
~�0
k

Þ � �SL
~�0 ðm̂2

~�0
k

Þg

� Im	M~�0

�
kk

:¼k¼1;SI
0; (76)

½	Z~�0�kl ¼ 2

m2
~�0
k

�m2
~�0
l

fRe½m2
~�0
l

�L
~�0ðm̂2

~�0
l

Þ

þm~�0
k
m~�0

l
�R

~�0ðm̂2
~�0
l

Þ þm~�0
k
�SL

~�0 ðm̂2
~�0
l

Þ
þm~�0

l
�SR

~�0 ðm̂2
~�0
l

Þ �m~�0
k
	M~�0 �m~�0

l
	My

~�0�kl
(77)

within scheme I (SI). Making the replacements 	M~�0 !
~	M~�0 and 	M~�� ! ~	M~�� for scheme II, Eqs. (73) and

(76) no longer vanish.

Contributions to the partial decay widths can arise from
the product of the imaginary parts of the loop functions
(absorptive contributions) of the self-energy-type contri-
butions in the external legs and the imaginary parts of
complex couplings entering the decay vertex or the self-
energies. It is possible to combine these additional contri-
butions with the field renormalization constants in a single
‘‘Z factor,’’ Z; see e.g., Refs. [45,46] and references
therein. In our notation (unbarred for an incoming neutra-
lino or a negative chargino, barred for an outgoing neutra-
lino or negative chargino, and not making the difference
between scheme I and II explicit), they read

½	ZL=R
~�� �ii ¼ �½�L=R

~�� ðm2
~��
i
Þ þm2

~��
i
ð�L0

~��ðm2
~��
i
Þ

þ�R0
~��ðm2

~��
i
ÞÞ þm~��

i
ð�SL0

~�� ðm2
~��
i
Þ

þ�SR0
~�� ðm2

~��
i
ÞÞ�ii � 1

2m~��
i

½�SL
~��ðm2

~��
i
Þ

��SR
~��ðm2

~��
i
Þ � 	M~�� þ 	M�

~���ii; (78)

½	ZL=R
~�� �ij ¼ 2

m2
~��
i
�m2

~��
j

½m2
~��
j
�L=R

~�� ðm2
~��
j
Þ

þm~��
i
m~��

j
�R=L

~�� ðm2
~��
j
Þ þm~��

i
�SL=SR

~�� ðm2
~��
j
Þ

þm~��
j
�SR=SL

~�� ðm2
~��
j
Þ �m~��

i=j
	M~��

�m~��
j=i
	My

~���ij; (79)

½	ZL=R

~�0 �kk ¼ �½�L=R

~�0 ðm̂2
~�0
k

Þ þm2
~�0
k

ð�L0
~�0ðm̂2

~�0
k

Þ þ �R0
~�0ðm̂2

~�0
k

ÞÞ
þm~�0

k
ð�SL0

~�0 ðm̂2
~�0
k

Þ þ�SR0
~�0 ðm̂2

~�0
k

ÞÞ�kk

� 1

2m~�0
k

½�SL
~�0 ðm̂2

~�0
k

Þ � �SR
~�0 ðm̂2

~�0
k

Þ

� 	M~�0 þ 	M�
~�0�kk; (80)

½	ZL=R

~�0 �kl ¼ 2

m2
~�0
k

�m2
~�0
l

½m2
~�0
l

�L=R

~�0 ðm̂2
~�0
l

Þ

þm~�0
k
m~�0

l
�R=L

~�0 ðm̂2
~�0
l

Þ þm~�0
k
�SL=SR

~�0 ðm̂2
~�0
l

Þ
þm~�0

l
�SR=SL

~�0 ðm̂2
~�0
l

Þ �m~�0
k=l
	M~�0

�m~�0
l=k
	My

~�0�kl; (81)

½	 �ZL=R
~�� �ii ¼ �½�L=R

~�� ðm2
~��
i
Þ þm2

~��
i
ð�L0

~��ðm2
~��
i
Þ

þ�R0
~��ðm2

~��
i
ÞÞ þm~��

i
ð�SL0

~�� ðm2
~��
i
Þ

þ�SR0
~�� ðm2

~��
i
ÞÞ�ii � 1

2m~��
i

½�SL
~��ðm2

~��
i
Þ

��SR
~��ðm2

~��
i
Þ � 	M~�� þ 	M�

~���ii; (82)
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½	 �ZL=R
~�� �ij ¼ 2

m2
~��
j
�m2

~��
i

½m2
~��
i
�L=R

~�� ðm2
~��
i
Þ

þm~��
i
m~��

j
�R=L

~�� ðm2
~��
i
Þ þm~��

i
�SL=SR

~�� ðm2
~��
i
Þ

þm~��
j
�SR=SL

~�� ðm2
~��
i
Þ �m~��

i=j
	M~��

�m~��
j=i
	My

~���ij; (83)

½	 �ZL=R

~�0 �kk ¼ ½	ZR=L

~�0 �kk; (84)

½	 �ZL=R

~�0 �kl ¼ ½	ZR=L

~�0 �lk (85)

within scheme I, with 	M~�0 ! ~	M~�0 and 	M~�� !
~	M~�� for scheme II. The chargino/neutralino Z factors

obey fRe	 �ZL=R
~� ¼ ½fRe	ZL=R

~� �y ¼ ½	ZL=R
~� �y, which is ex-

actly the case without absorptive contributions. Equations
(84) and (85) hold due to the Majorana character of the
neutralinos. We will use these Z factors rather than the
field renormalization constants defined in Eqs. (72)–(77) in
the following numerical analysis.

Special care has to be taken in the regions of the cMSSM
parameter space where the gaugino-Higgsino mixing in the
chargino sector is maximal, i.e., where j�j 	 M2. Here
	M2 [see Eq. (52)] and 	� [see Eq. (53)] diverge as
ðU�

11U
�
22V

�
11V

�
22 �U�

12U
�
21V

�
12V

�
21Þ�1 for scheme I or

2½ReðU21V21ÞReðe�i
�U12V12Þ�ReðU11V11ÞReðe�i
�U22

V22Þ� for scheme II, and the loop calculation does not yield
a reliable result.3 It should be noted that the singularity
arises in both schemes for j�j ¼ M2. These kinds of
divergences were also discussed in Refs. [37,39,44].

Our two renormalization schemes differ in the treatment
of complex contributions in the chargino/neutralino
sector. The first difference is that in scheme I, in the
derivation of the renormalization conditions, 	M2 is al-
lowed to be complex. Therefore, six real conditions must
be imposed in order to renormalize the mass matrices X

and Y, Eqs. (8) and (11), as opposed to the five in scheme
II. In addition, in scheme I, the renormalization of the
phases is obtained by imposing that the imaginary parts
of the relevant diagonal renormalization constants [Eqs.
(73) and (76)] vanish. In scheme II the phases are not
renormalized, as they are found to be UV finite.
Scheme I is based on the idea that the absorptive con-

tributions should not enter the renormalization procedure.
Therefore, it requires that the absorptive contributions not
be included in the on-shell mass renormalization condi-
tions [Eqs. (37) and (39)]. While the phases of the complex
counterterms of the mass matrix parameters are also found
to be UV finite, no condition is imposed on them. Notice
that it is always possible to rephase the parameters of the
chagino/neutralino sector, since only the relative phases
are physically relevant. Scheme II is supported by the
argument that the phases are not renormalized, i.e., they
are the same at tree level and loop level. Therefore, it is
clear which of the fundamental parameters are chosen to be
real and which are chosen to be complex; i.e., in scheme II
M2 is fixed to be real, while in scheme I its counterterm is
allowed to be complex. As stated earlier, the results in both
schemes should agree in the case of real parameters. In the
complex case, we expect the differences to be very small,
as they are of higher order.

B. The lepton/slepton sector of the cMSSM

For the discussion of the one-loop contributions to the
decay channels in Eqs. (5) and (6), a description of the

scalar lepton (~‘) and neutrino (~�‘) sector as well as their
fermionic SM partners is needed (we assume no generation
mixing and discuss the case for one generation only). The

bilinear part of the ~‘ and ~�‘ Lagrangian,

Lmass
~‘=~�‘

¼ �ð~‘yL; ~‘yRÞM~‘

~‘L
~‘R

 !
� ð~�‘

yÞM~�‘
ð~�‘Þ; (86)

contains the slepton and sneutrino mass matrices M~‘ and

M~�‘
, given by

M~‘ ¼
M2

~‘L
þm2

‘ þM2
Zc2�ðI3‘ �Q‘s

2
wÞ m‘X

�
‘

m‘X‘ M2
~‘R
þm2

‘ þM2
Zc2�Q‘s

2
w

0@ 1A; (87)

M ~�‘
¼ M2

~‘L
þ I3�c2�M

2
Z; (88)

with

X‘ ¼ A‘ ��� tan�: (89)

M~‘L
andM~‘R

are the soft SUSY-breaking mass parameters,
where M~‘L

is equal for all members of an SUð2ÞL doublet.
m‘ and Q‘ are, respectively, the mass and the charge of the

corresponding lepton; I3‘=� denotes the isospin of ‘=�; and
A‘ is the trilinear soft-breaking parameter. We use the
shorthand notations cx ¼ cosðxÞ, sx ¼ sinðxÞ. The mass
matrix M~‘ can be diagonalized with the help of a unitary
transformation U~‘:

D~‘ ¼ U~‘M~‘U
y
~‘
¼

m2
~‘1

0

0 m2
~‘2

0@ 1A;
U~‘ ¼

U~‘11
U~‘12

U~‘21
U~‘22

 !
: (90)

3Similar divergences appearing in the on-shell renormalization
in the sbottom sector, occurring for ‘‘maximal sbottom mixing,’’
have been observed and discussed in Refs. [45,46,56].
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The mass eigenvalues depend only on jX‘j. The
scalar lepton masses will always be mass ordered, i.e.,
m~‘1


 m~‘2
:

m2
~‘1;2

¼ 1

2
ðM2

~‘L
þM2

~‘R
Þ þm2

‘ þ
1

2
I3‘c2�M

2
Z (91)

m2
~�‘
¼ M2

~‘L
þ I3�c2�M

2
Z: (92)

A detailed description of the renormalization of this
sector can be found in Refs. [45,46,51]. Here we just
briefly review the restoration of the SUð2ÞL relation for
the renormalized slepton mass parameters. Since our on-
shell approach results in an independent renormalization of
the charged sleptons and of the scalar neutrino, we need to
restore the SUð2ÞL relation at one loop to avoid problems
concerning UV and IR finiteness, as discussed in detail in
Ref. [56]. This is achieved via a shift in theM~‘L

parameter

entering the ~‘ mass matrix (see also Refs. [45,46,57,58]).
Requiring the SUð2ÞL relation to be valid at the loop level

induces the following shift in M2
~‘L
ð~‘Þ:

M2
~‘L
ð~‘Þ ¼ M2

~‘L
ð~�‘Þ þ 	M2

~‘L
ð~�‘Þ � 	M2

~‘L
ð~‘Þ; (93)

with

	M2
~‘L
ð~‘Þ ¼ jU~‘11

j2	m2
~‘1
þ jU~‘12

j2	m2
~‘2
�U~‘22

U�
~‘12
	Y‘

�U~‘12
U�

~‘22
	Y�

‘ � 2m‘	m‘ þM2
Zc2�Q‘	s

2
w

� ðI3‘ �Q‘s
2
wÞðc2�	M2

Z þM2
Z	c2�Þ; (94)

	M2
~‘L
ð~�‘Þ ¼ 	m2

~�‘
� I3�ðc2�	M2

Z þM2
Z	c2�Þ: (95)

Such shifts, however, mean that both slepton masses are no
longer on shell. An additional shift in M~‘R

restores at least

one slepton mass to be on shell:

M2
~‘R
ð~‘iÞ ¼ m2

‘jA�
‘ �� tan�j2

M2
~‘L
ð~‘Þ þm2

‘ þM2
Zc2�ðI3‘ �Q‘s

2
wÞ �m2

~‘i

�m2
‘ �M2

Zc2�Q‘s
2
w þm2

~‘i
: (96)

A ‘‘natural’’ choice is to preserve the character of the
sleptons in the renormalization process, and this additional
shift relates the mass of the chosen slepton to the slepton
parameterM~‘R

. As m~‘1

 m~‘2

(see above) andM2
~‘L
< M2

~‘R

for both scenarios considered later (see Table I), we choose
to insert m~‘2

into Eq. (96) and recover its original value

from the rediagonalization after applying this shift.
The renormalization of the quark/squark sector is de-

scribed in detail in Ref. [46]. As for the slepton sector, the
restoration of the SUð2ÞL relation in the squark sector leads
to shifts analogous to Eqs. (93) and (96) in the left and right
squark mass parameters, respectively,M~qL andM~qR . In our

subsequent numerical analysis, these shifts have been in-
cluded for the results calculated in scheme I, but their

effect is found to be negligible for our choice of
parameters.

C. The Higgs boson sector of the cMSSM

The two Higgs doublets of the cMSSM are decomposed
in the following way:

H 1 ¼
H11

H12

 !
¼ v1 þ 1ffiffi

2
p ð
1 � i�1Þ
�
�

1

 !
;

H 2 ¼
H21

H22

 !
¼ ei�


þ
2

v2 þ 1ffiffi
2

p ð
2 þ i�2Þ

0@ 1A:
(97)

Besides the vacuum expectation values v1 and v2, in
Eq. (97) a possible new phase � between the two Higgs
doublets is introduced. After a rotation to the physical
fields, one obtains for the terms linear and bilinear in the
fields

VH ¼ . . .þ Thhþ THH þ TAA

� 1

2
h;H; A;G
� �

Mdiag
hHAG

h

H

A

G

0BBBBB@
1CCCCCA

þ Hþ; Gþ� �
M

diag

H�G�
H�

G�

 !
þ � � � ; (98)

where the tree-level masses are denoted as mh, mH, mA,
mG, MH� , mG� . With the help of a Peccei-Quinn trans-
formation [59], � and the complex soft SUSY-breaking
parameters in the Higgs sector can be redefined [60] such
that the complex phases vanish at tree level.
Including higher-order corrections, the three neutral

Higgs bosons can mix [8,10,11,50],

ðh;H; AÞ ! ðh1; h2; h3Þ; (99)

where we define the loop corrected masses according to

Mh1 
 Mh2 
 Mh3 : (100)

Details about the renormalization and the Z factors, ensur-
ing the on-shell properties of external Higgs bosons, can be
found in Refs. [46,50]. For the renormalization of tan� and
the Higgs field renormalization the DR scheme is chosen
[46,50]. This leads to the introduction of the scale �R,
which will be fixed later to the mass of the decaying
particle.

TABLE I. MSSM parameters for the initial numerical inves-
tigation; all mass parameters are in GeV. M1, M2 and � are
chosen such that the values for m~��

1
and m~��

2
and Eq. (101) are

fulfilled (see text).

tan� MH� m~��
2

m~��
1

M~‘L
M~‘R

A‘ M~qL M~qR Aq

20 160 600 350 300 310 400 1300 1100 2000
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III. CALCULATION OF LOOP DIAGRAMS

In this section, we give some details about the calcula-
tion of the higher-order corrections to the neutralino de-
cays. Sample diagrams are shown in Figs. 1–6. Here the
generic internal particles are labeled as follows: F denotes
a SM fermion, chargino, or neutralino, S denotes a sfer-
mion or a Higgs, and V denotes a �, Z, orW�. Concerning
the diagrams for decays into charged particles, although we
only show diagrams for decays into ~��

i or leptons, we also
include the corresponding diagrams for the decays into ~�þ

i

or antileptons. Not shown are the diagrams for real (hard or
soft) photon radiation. These are obtained from the corre-
sponding tree-level diagrams by attaching a photon to the
electrically charged external particles. It should be noted
that the expressions for the tree-level diagrams are given
explicitly in the Appendix. Counterterm diagrams are also
not shown, but these can be obtained from the correspond-
ing tree-level diagrams by replacing the tree-level vertex
with the counterterm vertex.

Internally appearing Higgs bosons do not receive higher-
order corrections in their masses or couplings, which
would correspond to effects beyond one loop.
Furthermore, we find that using loop-corrected Higgs
boson masses and couplings for the internal Higgs bosons

leads to a divergent result. For external Higgs bosons, as
mentioned in Sec. II C, the appropriate Z factors are
applied, following the prescription of Ref. [50]. For the
numerical analysis, these factors, as well as the loop-
corrected masses for external Higgs bosons, are obtained
from FeynHiggs 2.9.0. Diagrams with a gauge boson/
Goldstone-Higgs self-energy contribution on the external
Higgs boson leg, absent from the Higgs Z factors [50], are
also required for the decays ~�0

i ! ~�0
jhk (i ¼ 2, 3, 4; j < i;

FIG. 1. Generic Feynman diagrams for the decay ~�0
i ! ~�0

jhk
(i ¼ 2, 3, 4; j < i; k ¼ 1, 2, 3). F can be a SM fermion,
chargino, or neutralino; S can be a sfermion or a Higgs boson;
V can be a �, Z, orW�. Not shown are the diagrams with a Z-hk
or G-hk transition contribution on the external Higgs boson leg.

FIG. 2. Generic Feynman diagrams for the decay ~�0
i ! ~�0

jZ
(i ¼ 2, 3, 4; j < i). F can be a SM fermion, chargino, or
neutralino; S can be a sfermion or a Higgs boson; V can be a
�, Z, or W�.

FIG. 4. Generic Feynman diagrams for the decay ~�0
i ! ~��

j W
þ

(i ¼ 2, 3, 4;j ¼ 1, 2). F can be a SM fermion, chargino, or
neutralino; S can be a sfermion or a Higgs boson; V can be a �,
Z, or W�.

FIG. 3. Generic Feynman diagrams for the decay ~�0
i ! ~��

j H
þ

(i ¼ 2, 3, 4; j ¼ 1, 2). F can be a SM fermion, chargino, or
neutralino; S can be a sfermion or a Higgs boson; V can be a �,
Z, orW�. Not shown are the diagrams with aWþ-Hþ orGþ-Hþ
transition contribution on the external Higgs boson leg.

FIG. 5. Generic Feynman diagrams for the decay ~�0
i ! ‘� ~‘þk

(i ¼ 2, 3, 4; ‘ ¼ e, �, �; k ¼ 1, 2). F can be a SM fermion,
chargino, or neutralino; S can be a sfermion or a Higgs boson; V
can be a �, Z, or W�.
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k ¼ 1, 2, 3), (Fig. 1, with a Z=G� hk transition), and
similarly for the decays ~�0

i ! ~��
j H

þ (i ¼ 2, 3, 4;

j ¼ 1, 2), (Fig. 3, with a Wþ=Gþ �Hþ transition). On
the other hand, Goldstone-Higgs/gauge boson self-energy
corrections for the neutralino decay to a chargino/neutra-
lino and a gauge boson ~�0

i ! ~�0
jZ (i ¼ 2, 3, 4; j < i) or

~�0
i ! ~��

j W
þ (i ¼ 2, 3, 4; j ¼ 1, 2) can be neglected, as

these vanish on mass shell; i.e., for p2 ¼ M2
Z (p2 ¼ M2

W)

due to " � p ¼ 0, where p denotes the external momentum
and " the polarization vector of the gauge boson.

The diagrams and corresponding amplitudes have been
obtained with FeynArts [61]. The model file for calcula-
tions in scheme I, including the MSSM counterterms, is
described in more detail in Ref. [46], and the model file
used for calculations in scheme II is based on that dis-
cussed in Refs. [37,44]. The further evaluation has been
performed with FormCalc (and LoopTools) [62]. As a
regularization scheme for the UV divergences we have
used constrained differential renormalization [63], which
has been shown to be equivalent to dimensional reduction
[64] at the one-loop level [62]. Thus, the employed regu-
larization preserves SUSY [65,66]. All UV divergences
cancel in the final result.

The IR divergences from diagrams with an internal
photon have to cancel with the ones from the correspond-
ing real soft radiation, where we have included the soft
photon contribution following the description given in
Ref. [67]. The IR divergences arising from the diagrams
involving a � are regularized by introducing a finite photon
mass, �. All IR divergences, i.e., all divergences in the
limit � ! 0, cancel to all orders once virtual and real
diagrams for one decay channel are added. The only ex-
ceptions are the decays ~�0

2;3;4 ! ~��
1 W

�. The shift to the

neutralino on-shell masses via Eq. (68) results in an IR
divergence at the two-loop level, i.e., here we find a can-
cellation of the divergences ‘‘only’’ at the one-loop level,
as required for our one-loop calculation. The remaining
two-loop IR divergence could be eliminated by a
symmetry-restoring counterterm in the ~�0

2;3;4 ! ~��
1 W

�

vertex, similar to the evaluation of the decay ~t2 ! ~b1;2W
þ

in Ref. [46]. We have furthermore checked that our result
does not depend on �E, defining the energy cut that
separates the soft from the hard radiation. Our numerical
results have been obtained for �E ¼ 10�5 �m~�0

i
for all

channels.4

IV. NUMERICAL ANALYSIS

In this section, we will first introduce and motivate the
scenarios studied, discussing the current experimental con-
straints considered, then introduce the observables calcu-
lated, and finally present our results for each of the decay
channels of the heavier neutralino (~�0

4 ! xy) as a function
of ’M1

.

As stated earlier, we present our results in two scenarios.
In both, the absolute value of M1 (see above) is fixed via
the GUT relation (with jM2j � M2):

jM1j ¼ 5

3
tan2wM2 	 1

2
M2: (101)

For the numerical analysis, we obtain M2 and � from the
fixed chargino masses m~��

1;2
, and jM1j via Eq. (101), leav-

ing ’M1
as a free parameter. Our two scenarios arise due to

the ambiguity in calculating � and M2 from m~��
1;2
. This

ambiguity can be resolved by choosing an addition condi-
tion, �>M2 or �<M2. The first choice, denoted by Sh,
results in a Higgsino-like ~�0

4, while the second choice,

denoted by Sg, results in a gaugino-like ~�0
4.

The values of the parameters for these scenarios are
given in Table I, where, in analogy to the slepton parame-
ters M~‘L

, M~‘R
and A‘ defined in Sec. II B for the sleptons,

M~qL and M~qR are the left- and right-handed soft SUSY-

breaking mass parameters, and Aq is the trilinear soft-

breaking parameter for the squarks. These are chosen such
that most decay modes are open simultaneously to permit
an analysis of as many channels as possible. Only decays
into the heavier chargino ~��

2 in general degenerate with the
heavier neutralino, and the decay channels ~�0

4 ! ~�0
3hk=Z,

(k ¼ 1, 2, 3) in Sh are kinematically closed. We also
ensure that the scenarios are consistent with the MSSM
Higgs boson searches at LEP [3], Tevatron [68] and LHC
[69]. The light Higgs mass scale together with the value of
tan� ¼ 20 are in potential conflict with the recent MSSM
Higgs search results, which, however, have only been
obtained in the mmax

h scenario [70]. We stick to our

parameter combination to facilitate the numerical analysis
with all decay channels involving Higgs bosons being open
simultaneously. On the other hand, the recent discovery of
the (lightest) Higgs boson at the LHC [4] allows for

FIG. 6. Generic Feynman diagrams for the decay ~�0
i ! �‘~�

y
‘

(i ¼ 2, 3, 4; ‘ ¼ e, �, �). F can be a SM fermion, chargino, or
neutralino; S can be a sfermion or a Higgs boson; V can be a �,
Z, or W�.

4The larger cut is necessary to obtain a better convergence of
the integration over the three-body phase space. The contribution
from nearly collinear photons (along the direction of the elec-
tron) leads to numerical instabilities in the integration.
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tan� * 9, as given in Table I.5 Furthermore, the following
exclusion limits for neutralinos [71] hold in our numerical
scenarios:

m~�0
1
> 46 GeV; m~�0

2
> 62 GeV;

m~�0
3
> 100 GeV; m~�0

4
> 116 GeV:

(102)

It should be noted that the limit for m~�0
1
arises solely when

Eq. (101) is assumed to hold. In the absence of this
condition, no limit on a light neutralino mass exists; see
Ref. [72] and references therein.

The most restrictive experimental constraints on the
phase of ’M1

arise due to the bounds on the electric dipole

moments (EDMs) of the neutron dn, mercury dHg, and

thallium dTl [73–75].
6 Using CPsuperH 2.2 [80], we have

calculated these EDMs and find that in the scenarios
studied, the bounds due to the thallium EDM are the
most constraining: ’M1

& �=100. This is mainly because,

in order to keep all channels open, the selectrons in our
scenarios are light. On increasing the masses of the lower
generation of sleptons to 1.2 TeV, ’M1

is unconstrained. It

should be noted that such a change would only affect our
results such that the decays to the lower generation slepton
channels are no longer open: the loop corrections to the
other decays are largely independent of these masses.

The chargino and neutralino masses for ’M1
¼ 0 are

shown in Table II, while the Higgs and slepton masses are
shown in Table III. Here h2 corresponds to the pure
CP -odd Higgs boson. For ’M1

¼ 90� (i.e., the maximal

CP violation possible in our numerical analysis), we find
the same Higgs boson masses within the precision of

Table III. In this case, h2 receives a very small CP -even
admixture of & 0:003% in both scenarios, while h1 and h3
remain correspondingly a nearly pure CP -even state. The
masses m~�0

i
are chosen such that the neutralinos would be

copiously produced in SUSY cascades at the LHC.
Furthermore, the production of ~�0

i ~�
0
j for i ¼ 1, 2 and j ¼

2, 3, 4 at the ILC 1000, i.e., with
ffiffiffi
s

p ¼ 1000 GeV via
eþe� ! ~�0

i ~�
0
j , will be possible, where unpolarized tree-

level cross sections in the scenarios Sg and Sh are shown in

Table IV. All the subsequent decay modes [Eqs. (3)–(6)]
would be (in principle) open, and the clean environment
would permit a detailed study of neutralino decays [15,16].
Higher-order corrections to the production cross sections
would change the values in Table IV by up toOð10%Þ [81],
and choosing appropriate polarized beams could enhance
the cross sections by a factor of 2 to 3. The accuracy of the
relative branching ratio [Eq. (105)] at the ILC would be
close to the statistical uncertainty, and from the high-
luminosity running of the ILC 1000, a determination of
the branching ratios at the percent level might be achiev-
able. We have calculated the decay width at tree level
(‘‘tree’’) and at the one-loop level (‘‘full’’), including all
one-loop contributions as described in Sec. III, and in
addition the relative size of this one-loop correction via

�tree � �treeð~�0
i ! xyÞ; �full � �fullð~�0

i ! xyÞ;

��=� � �full � �tree

�tree : (103)

In the figures below, we show the absolute value of the
various decay widths, �ð~�0

4 ! xyÞ on the left and the

relative correction from the full one-loop contributions
on the right. The total decay width is defined as the sum
of all kinematically open two-body decay widths,

TABLE II. The chargino and neutralino masses in the scenarios Sg and Sh. We also show the
values for the ‘‘derived’’ parameters M1,M2 and �. All mass parameters are in GeV, rounded to
0.1 GeV to show the sizes of small mass differences, which can determine whether a certain
decay channel is kinematically closed or open.

Scenario m~��
2

m~��
1

m~�0
4

m~�0
3

m~�0
2

m~�0
1

� M2 M1

Sg 600.0 350.0 600.0 364.2 359.6 267.2 362.1 581.8 277.7

Sh 600.0 350.0 600.1 586.2 349.9 171.4 581.8 362.1 172.8

TABLE III. The slepton and Higgs masses in the scenarios Sg and Sh. The selectron and
electron sneutrino masses are equal to those of the corresponding smuon and muon sneutrino up
to a few tenths of GeV. All masses are in GeV, rounded to 0.1 GeV.

Scenario m ~�1
m ~�2

m~�1 m~�2 m~��
m~��

MH� mh1 mh2 mh3

Sg 303.2 313.1 287.3 328.0 293.0 293.0 160.0 125.8 137.2 140.3

Sh 302.9 313.3 273.7 339.5 293.0 293.0 160.0 125.8 137.4 140.3

5The Higgs mass in the allowed range can be obtained by
varying the squark trilinear coupling Aq.

6In addition, the EDMs of heavy quarks [76], the electron
[77,78] and the deuteron [79] should be taken into account.
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�tree
tot � X

xy

�treeð~�0
i ! xyÞ; �full

tot �X
xy

�fullð~�0
i ! xyÞ:

(104)

The absolute and relative changes of the branching ratios
are defined as follows:

BRtree � �treeð~�0
i ! xyÞ

�tree
tot

; BRfull � �fullð~�0
i ! xyÞ

�full
tot

;

�BR

BR
� BRfull � BRtree

BRfull
: (105)

The last quantity is crucial in order to analyze the impact of
the one-loop corrections on the phenomenology at the
LHC and the ILC (see below). Since decays to a light
Higgs and the LSP are of particular importance, for the
decay ~�0

4 ! ~�0
1h1, we also show, in the lower panels, the

branching ratio BRð~�0
4 ! xyÞ (left) and the relative size of

the one-loop correction (right). The corresponding branch-
ing ratios for the other channels can be inferred from these
plots.

In order to distinguish the results evaluated in the two

schemes, we denote those of scheme II with a tilde, i.e., ~Sg

and ~Sh for the scenarios Sg and Sh, respectively. It should

be noted that the tree-level results obtained for the two
schemes fully agree, as our two renormalization schemes
differ only in the treatment of complex parts. The differ-
ence of one-loop results for real parameters is negligible,
and is only due to a different handling of the corrections in
the squark sector, which is not highly relevant for the
electroweak decays. Therefore, the results for both
schemes are only shown on the right panels for the relative
corrections. In Sec. IV F, we will summarize and discuss
the differences between these schemes, highlighting those
channels where the deviations are largest.

The numerical results we show in this section are, of
course, dependent on the choice of MSSM parameters.
Nevertheless, they give an idea of the relevance of the
full one-loop corrections. Decay widths (and their respec-
tive one-loop corrections) that may appear to be unobserv-
able due to the small size of their BR could become
important if other channels are kinematically forbidden.
Consequently, the one-loop corrections to all channels are
evaluated analytically, but in the numerical analysis we
only show the channels that are kinematically open in our
numerical scenarios, except for the decays into leptons of
the first two families, which are closely related to the
decays into third-family leptons.

A. Decays into charged Higgs and W bosons

We start our numerical analysis with the decays ~�0
4 !

~��
1 H

þ, presented in Fig. 7. The partial decay width for the
charge conjugated process ~�0

4 ! ~�þ
1 H

� can be obtained

by taking the charge conjugate of all the couplings. Since
in our analysis only M1 is complex, this is obtained with
the transformation ’M1

! 2�� ’M1
. This argument will

also be valid for all the decays into W bosons and lepton-
slepton pairs described below. All these decays have also
been computed in order to evaluate the total decay width at
the one-loop level.
This channel yields decay widths of around 0.7 GeV in

both scenarios, corresponding to BRs of�4:5% for Sg and

�11% for Sh. The tree-level partial widths are almost
equal in both scenarios due to the symmetry of the
Higgs-gaugino-Higgsino couplings under M2 $ � ex-
change, as well as to the similar phase space. The relative
corrections, shown in the right plot, are on the order of a
few percent. The mild dependence on ’M1

for this process

is due to our choice of parameters, in particular the GUT
relation on the gaugino parameters M1 and M2, which
leads to a weak dependence of the heavier neutralinos on

TABLE IV. Neutralino production cross sections at the ILC 1000. Here �0;0 denotes the cross
section for unpolarized beams, while �pol denotes the cross section with electron and positron

polarization �80% and þ60%, respectively. The sums of ~�0
i ~�

0
j for i ¼ 2, 3, 4 are performed

over j 
 i. The two rightmost columns show the statistical precision for a (hypothetical)
branching ratio of 10% assuming an integrated luminosity of 1 ab�1, rounded to 1%.

Scenario Process �0;0½fb� �pol½fb� Stat. prec:0;0 (%) Stat. prec:pol (%)

Sg eþe� ! ~�0
4 ~�

0
1 5.2 15.0 4 3

Sh eþe� ! ~�0
4 ~�

0
1 1.0 1.6 10 8

Sg eþe� ! ~�0
4 ~�

0
2 1.0 2.9 10 6

Sh eþe� ! ~�0
4 ~�

0
2 0.4 1.1 16 10

Sg eþe� ! ~�0
4 ~�

0
3 0.5 0.4 14 16

Sg eþe� ! P
~�0
4 ~�

0
j 6.7 18.3 4 2

Sh eþe� ! P
~�0
4 ~�

0
j 1.4 2.7 8 6

Sg eþe� ! P
~�0
3 ~�

0
j 39.9 71.8 2 1

Sh eþe� ! P
~�0
3 ~�

0
j 3.2 6.1 6 4

Sg eþe� ! P
~�0
2 ~�

0
j 13.5 11.0 3 3

Sh eþe� ! P
~�0
2 ~�

0
j 46.2 132.4 1 1
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M1. The dips best visible in the right panel are due to the
~��
1 ! ~�0

1W
� threshold, at ’M1

’ 125� and ’M1
’ 235�.

Due to CPT invariance, the masses are invariant under
’M1

! �’M1
, resulting in mirrored threshold effects.

These effects are further discussed in Sec. IVB for the
decays into the second lightest neutralino.

The results for the two schemes are shown for the
relative corrections in the right panel. The agreement
between the relative corrections is at the level of 10�5 for
both scenarios (see Table V), and therefore cannot be
visibly distinguished here. It should be noted that the
differences between the schemes are particularly small
due to mild dependence of the tree-level decay width on

’M1
. As the schemes are identical in the real case, only

decays with a stronger dependence on the phase ’M1
are

sensitive to the differences between them.
Next we analyze the decays ~�0

4 ! ~��
1 W

þ shown in

Fig. 8. The general behavior of the decays into Wþ is
very similar to those into Hþ discussed above. This decay
yields decay widths around �1 GeV in both scenarios,
corresponding to BRs of�7% and�17% for, respectively,
Sg and Sh, with a mild dependence on ’M1

. The one-

loop effects are found to be, respectively, of �� 8% and
�� 4%, and the same thresholds as in the previous pro-
cess can be observed as dips in the right panels. The
agreement between the relative corrections is at the level

FIG. 7 (color online). �ð~�0
4 ! ~��

1 H
þÞ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the

parameters chosen according to Table I, with ’M1
varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.

TABLE V. Differences between the relative corrections to the decay width for schemes I and
II, shown in both scenarios Sg and Sh, i.e., ��=�ðSg=ShÞ ���=�ð~Sg=~ShÞ, at the specified

values of ’M1
. The missing results correspond to those channels for which the decays are below

threshold Sh.

Sg Sh

Channel 45� 90� 45� 90�

~�0
4 ! ~��

1 H
þ 1:5� 10�5 2:0� 10�5 �6:9� 10�6 �4:8� 10�6

~�0
4 ! ~��

1 W
þ 3:4� 10�6 6:1� 10�6 9:9� 10�5 9:7� 10�5

~�0
4 ! ~�0

1h1 �1:9� 10�4 �6:1� 10�4 �6:3� 10�5 �1:8� 10�4

~�0
4 ! ~�0

1h2 4:5� 10�4 5:2� 10�4 1:5� 10�4 1:7� 10�4

~�0
4 ! ~�0

1h3 �1:4� 10�4 �3:6� 10�4 �9:1� 10�5 �2:2� 10�4

~�0
4 ! ~�0

2h1 �1:2� 10�5 5:4� 10�5 2:7� 10�6 6:1� 10�6

~�0
4 ! ~�0

2h2 1:3� 10�4 �4:9� 10�4 6:0� 10�6 7:1� 10�6

~�0
4 ! ~�0

2h3 5:5� 10�5 1:0� 10�4 4:5� 10�6 8:6� 10�6

~�0
4 ! ~�0

3h1 2:4� 10�4 �7:2� 10�4 � � � � � �
~�0
4 ! ~�0

3h2 �2:8� 10�5 3:2� 10�5 � � � � � �
~�0
4 ! ~�0

3h3 �5:1� 10�5 �1:6� 10�4 � � � � � �
~�0
4 ! ~�0

1Z 1:2� 10�3 7:5� 10�4 1:2� 10�4 1:7� 10�4

~�0
4 ! ~�0

2Z 2:2� 10�4 �3:4� 10�4 9:5� 10�6 7:3� 10�6

~�0
4 ! ~�0

3Z �4:5� 10�5 1:2� 10�5 � � � � � �
~�0
4 ! ��~�þ1 �1:3� 10�6 3:7� 10�6 �3:5� 10�5 �1:1� 10�5

~�0
4 ! ��~�þ2 �6:5� 10�5 �6:2� 10�5 �1:1� 10�4 �1:1� 10�4

~�0
4 ! ��~�

y
� �3:5� 10�6 �7:0� 10�6 �8:9� 10�6 �1:9� 10�5
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of 10�5 for Sg and 10
�4 for Sh (see Table V), and therefore

is again too high to be observed.

B. Decays into neutral Higgs bosons

Now we turn to the decays involving neutral Higgs bo-
sons. The channels ~�0

4 ! ~�0
jhk (j ¼ 1, 2, 3; k ¼ 1, 2, 3)

can serve as sources for Higgs production from SUSY
cascades at the LHC, and are therefore of particular interest.
The decay ~�0

4 ! ~�0
1h1 is shown in Fig. 9. Contrary to

what we observed for the decays into charginos, the two
scenarios result in very different decay widths, and both
show a strong dependence on ’M1

, with partial widths

FIG. 8 (color online). �ð~�0
4 ! ~��

1 W
þÞ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the

parameters chosen according to Table I, with ’M1
varied. The left plot shows the decay width, the right plot shows the relative size of

the corrections.

FIG. 9 (color online). �ð~�0
4 ! ~�0

1h1Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the
parameters chosen according to Table I, with ’M1

varied. The upper-left plot shows the decay width, and the upper-right plot shows the

relative size of the corrections. The lower-left plot shows the BR, and the lower-right plot shows the relative size of the BR.
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varying between 0.45 and 0.13 GeV for Sh and between
0.06 and 0.01 GeV for Sg. The strong dependence on the

phase ’M1
is a consequence of the change in the relative

CP phase of ~�0
4 and ~�0

1, while the corresponding CP parity

of the light Higgs, which here is CP even, is not strongly
affected. For ’M1

¼ 0, ~�0
4 and ~�0

1 have the same relative

CP parity, while for ’M1
¼ � they have the opposite one.

Therefore, at 
M1
¼ � the decay is p-wave suppressed,

while at 
M1
¼ 0 the s-wave mode is allowed. In Sh the

partial decay widths are only partially suppressed, due to
the relatively large phase space. In Sg the suppression is

stronger for the tree-level amplitude, leading to larger
relative corrections. The relative corrections, shown in
the upper-right panel, are �10% for Sh and are between
2% and 8% for Sg. For Sg we observe a small difference

between the two schemes at ’M1
	 �90� on the order of

0.1% (see also Table V). It should be noted that here, as
opposed to the case of the previous decays, the fact that the
tree-level decay width depends strongly on ’M1

leads to a

noticeable difference between the two schemes. This dif-
ference has been highlighted in Fig. 27. In the lower-left
panel we show the branching ratios, and in the lower-right
panel its relative corrections. Since the difference between
the schemes is here very small, we only show these results
in scheme I. The peaks at ’M1

¼ 35� and 325� are due to

the threshold for the decay ~�0
2 ! ~�0

1h1, which leads to a

singularity which affects the total width (see the discussion
below on these threshold effects). It should be noted that
the decay widths and the corresponding branching ratios,
as well as their relative corrections, are roughly propor-
tional here because the total width of ~�0

4, shown in Fig. 24

below, is almost independent of ’M1
in both scenarios (see

the discussion in Sec. IV F).
The results for the decay ~�0

4 ! ~�0
1h2 are shown in

Fig. 10. Since in both scenarios h2 tends to the CP -odd
Higgs boson for real couplings, the dependence on ’M1

is

opposite to that for the decay ~�0
4 ! ~�0

1h1 discussed above,

with a p-wave suppression at’M1
¼ 0 and with the s-wave

mode being allowed at 
M1
¼ �. The decay widths are a

factor of 2 smaller than those for the decay into the lightest
Higgs for Sh, and of the same order for Sg. The relative

corrections are also similar, of order �10% in Sh and
between 2% and 10% for Sg. We can also observe a small

difference at large ’M1
between the two schemes in Sg, on

the order of 0.05% (see Table V).
The decay ~�0

4 ! ~�0
1h3 is shown in Fig. 11. The ’M1

dependence of the partial width and its relative correction
for this process is qualitatively similar to that of
~�0
4 ! ~�0

1h1. However, for Sh the partial width is much

smaller, between 0.01 and 0.04 GeV. As the difference
between the two schemes is on the order of 0.01% (see
Table V), they cannot be visibly distinguished here.
The decays ~�0

4 ! ~�0
2h1, ~�0

4 ! ~�0
2h2, and ~�0

4 ! ~�0
2h3

are shown in Figs. 12–14, respectively. In scenario Sh,
the second-lightest neutralino is mainly wino-like, with a
small mixing with the bino component, leading to a
weak dependence on ’M1

. For Sg, the dependence on

’M1
is much larger, since the second-lightest neutralino’s

Higgsino and bino components are both large.
For ~�0

4 ! ~�0
2h1 in Sg, as shown in Fig. 12, the decay

width oscillates from �1:05 to 1.2 GeV, and for Sh the
decay width is �1:2 GeV. It should be noted that this
decay is s-wave mode allowed, and therefore the decay
widths are 2.5 to 9 times larger than the decay into the
lightest Higgs and neutralino. This turns out to be the
dominating process, with branching ratios of up to �8%
and �19% for, respectively, Sg and Sh. The larger ’M1

dependence in Sg is due to the strong bino-Higgsino mix-

ing of ~�0
2 in this scenario. This feature will be equally

relevant for the remaining decays into either ~�0
2 or ~�0

3

discussed below. For Sg, we observe the effect of the

threshold for ~�0
2 ! ~�0

1h1 at ’M1
¼ 35� and 325�. The

FIG. 10 (color online). �ð~�0
4 ! ~�0

1h2Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the
parameters chosen according to Table I, with ’M1

varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.
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FIG. 12 (color online). �ð~�0
4 ! ~�0

2h1Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the
parameters chosen according to Table I, with ’M1

varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.

FIG. 11 (color online). �ð~�0
4 ! ~�0

1h3Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the
parameters chosen according to Table I, with ’M1

varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.

FIG. 13 (color online). �ð~�0
4 ! ~�0

2h2Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the
parameters chosen according to Table I, with ’M1

varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.
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dips are due to the resulting singular behavior of the de-
rivatives of the self-energies entering the field renormaliza-
tion constants. This effect will also be observed in the other
decays to a ~�0

2 (see Figs. 13, 14, and 19) in the total width of

~�0
4, in Fig. 24, and in the branching ratios (see e.g., Fig. 9). It

should be noted that both schemes have the same dips at
’M1

¼ 35� and 325�. This will be true as well for the other
decays to ~�0

2 described below. The corrections are relatively

small,�1% to�3% for Sh and�2% for Sh. In Fig. 12, the
renormalization schemes cannot be visibly distinguished
from each other. The difference is below 0:01% for Sg, and

below 10�5 for Sh (see Table V for details).
For ~�0

4 ! ~�0
2h2 in Sg, as shown in Fig. 13, the decay

width oscillates from�0:03 to 0.11 GeV, while for Sh it is
�0:03 GeV. The corresponding branching ratios in Sg and

Sh are, respectively, �0:2–0:8% and �0:5%. It should be
noted that this decay is s-wave mode suppressed, and the
decay width is therefore smaller than that for the decays
into h1 and h3. Again, for Sg, the effect of the threshold for

~�0
2 ! ~�0

1h1 at ’M1
¼ 35� and 325� is visible. The correc-

tions are comparatively large for Sg, �0 to 35%, and for

Sh are �6%. Despite a relatively significant difference
between the schemes of 0.05% for Sg, in Fig. 13 this

remains invisible. The large relative corrections in Sg are

a consequence of the suppressed tree-level result, as well as
the strong effect of the corrections on the mixing of the
second-lightest neutralino.
The decay ~�0

4 ! ~�0
2h3, shown in Fig. 14, is s-wave

mode allowed, and qualitatively similar to ~�0
4 ! ~�0

2h1.
However, its decay width is smaller due to phase space
suppression, oscillating from 0.14 to 0.18 GeV for Sg and

0.12 GeV for Sh, and corrections are sizeable:�� 5% and
15% for Sg and Sh, respectively. The two schemes cannot

be visibly distinguished here. The difference between the
schemes reaches 0.01% for Sg, and again this remains

invisible (see Table V).
The decays ~�0

4 ! ~�0
3h1, ~�0

4 ! ~�0
3h2, and ~�0

4 ! ~�0
3h3,

shown in Figs. 15–17, respectively, are kinematically

FIG. 14 (color online). �ð~�0
4 ! ~�0

2h3Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the
parameters chosen according to Table I, with ’M1

varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.

FIG. 15 (color online). �ð~�0
4 ! ~�0

3h1Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the
parameters chosen according to Table I, with ’M1

varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.
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closed in scenario Sh. For Sg, there is a strong dependence

on ’M1
since ~�0

3 has both large Higgsino and bino compo-

nents. However, contrary to what we observed for the
decays to ~�0

2 in Sg, the decay to h2 is s-wave mode allowed

for ’M1
¼ 0, while the other two decays are suppressed.

This is due to the opposite relative CP -parity of the
~�0
3 � ~�0

4 pair relative to the ~�0
2 � ~�0

4 pair.

For ~�0
4 ! ~�0

3h1, as shown in Fig. 15, an oscillating

behaviour similar to that for ~�0
4 ! ~�0

2h2 but even more

enhanced (going from �0:01 to 0.13 GeV) results in even
larger relative corrections. In fact, the suppression of the
tree level is now larger due to the smaller phase space for
this decay, and mixing with the unsuppressed states of the
neutralinos has a dramatic effect, with corrections ap-
proaching 70%. Notice, however, that the second and third
lightest neutralinos are roughly degenerate in Sg, see

Tab. I. This leads naturally to a large mixing character
for these two mass eigenstates, supported by the fact that
the sum of the decay widths is much less sensitive to ’M1

.

Therefore, the large corrections should not be regarded as a
breakdown of the renormalization procedure but rather as
an indication that one should consider all the neutralino
states simultaneously. For this particular decay the branch-
ing ratio does not reach 1%. In Fig. 15, the difference
between the renormalization schemes reaches �0:02%
and they cannot be visibly distinguished from each other,
see Tab. V for details.
For the decays into the heavier Higgs bosons, the

corrections are mild, at the level of a few percent. In

~�0
4 ! ~�0

3h2, as shown in Fig. 16, the unsuppressed decay,

with widths between �0:6 and 0.7 GeV, receives small

corrections via mixing with the p-wave suppressed states.
In ~�0

4 ! ~�0
3h3, as shown in Fig. 17, the ’M1

dependence

is small due to the combination of one p-wave suppressed
amplitude with an s-wave allowed one for which the

couplings are small, resulting in corrections of a few

percent. For these decays, the small difference between

the two schemes cannot be observed in the figures.

FIG. 16 (color online). �ð~�0
4 ! ~�0

3h2Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the
parameters chosen according to Table I, with ’M1

varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.

FIG. 17 (color online). �ð~�0
4 ! ~�0

3h3Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the
parameters chosen according to Table I, with ’M1

varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.
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C. Decays into Z bosons

The channels involving the Z boson, ~�0
4 ! ~�0

jZ, are

presented in Figs. 18–20. The strong resemblance between
the ’M1

dependence between these plots and those for the

decay into h2 is due to the fact that gauge bosons are CP
odd, while in our scenarios the second Higgs boson has a
very small CP -even component and tends to the CP -odd
state for ’M1

¼ 0, �. There is a strong dependence on the

relative CP phase of the neutralinos in the initial and final
states, which leads to visible differences between the re-
normalization schemes, given explicitly in Table V.

In both scenarios, the lightest neutralino is mainly bino-
like; therefore ~�0

4 ! ~�0
1Z depends strongly on ’M1

, as

shown in Fig. 18. The decay is both qualitatively and
quantitatively similar to the case of ~�0

4 ! ~�0
1h2: due to

the relative CP phase of the neutralinos and the fact that
the Z is CP odd, the decay is suppressed at ’M1

¼ 0 and

maximal at ’M1
¼ 180�, and the decay width ranges from

0 to 0.14 GeV and from 0.08 to 0.25 GeV for Sg and Sh,

respectively. For Sg, the dependence of the relative size of

the corrections on ’M1
is much larger, from 1% to 15%,

with visible differences between the schemes at large ’M1

of up to 0.2%, while the loop corrections for Sh are almost
independent of ’M1

, at �8%. The difference between the

schemes in Sg has been highlighted in Fig. 27.

For ~�0
4 ! ~�0

2Z, in Sg the decay width oscillates from

�0:05 to 0.15 GeV, and for Sh the decay width is
�0:06 GeV, as shown in Fig. 19. For Sg, the effect of the

threshold for ~�0
2 ! ~�0

1h1 at ’M1
¼ 35� and 325� is visible

as a small dip in the decay width and a marked dip in the
relative corrections. The corrections for Sg are compara-

tively large,�0 to 25%, and for Sh they are�3%. The two
schemes are not visibly distinguished from each other, with
the largest differences in Sg of�4� 10�4. Although in Sh

it is below threshold, in Sg the decay ~�0
4 ! ~�0

3Z, shown in

Fig. 20, is s-wave mode allowed, resulting in the largest

FIG. 19 (color online). �ð~�0
4 ! ~�0

2ZÞ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the
parameters chosen according to Table I, with ’M1

varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.

FIG. 18 (color online). �ð~�0
4 ! ~�0

1ZÞ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the
parameters chosen according to Table I, with ’M1

varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.
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branching ratio into Z. The decay width goes from
0.78 GeV at ’M1

	 0 to 0.62 GeV, with the corrections

between�6:2 and 10.5%. The two schemes differ by up to
�5� 10�5 and cannot be visibly distinguished.

D. Decays into (s)leptons

Now we turn to the decays involving (scalar) leptons.
The expressions for all these decay widths follow the same
pattern (see the expressions for the tree-level widths in the
Appendix). The dependence on ’M1

is small, although the

results for Sh do show some dependence due to the small
bino-like component of the decaying neutralino. We have
chosen M~‘L

<M~‘R
, leading to lighter left-handed and

heavier right-handed sleptons, and significant mixing in
the scalar tau sector.

In Fig. 21, we show the results for the decay

~�0
4 ! ��~�þ1 . The decay widths are found to be an

order of magnitude larger in Sg (�0:37 GeV) than in Sh

(� 0:03 GeV), since the gaugino-like neutralino has an

unsuppressed coupling to the large left component of the

stau, while the Higgsino-like neutralino couples to the

suppressed Yukawa coupling. This pattern is even more

significant for the decays into the lower-generation slep-

tons not shown here. In the right panel, we observe that the

one-loop corrections are very small in Sg, while they are

around �20% in Sh, due to the larger dependence on the

stau mixing.
The results for the decay into the heavier scalar tau are

shown in Fig. 22. The pattern is similar to the preceding
decay, the difference being that here the right-handed
component of the heavier stau is larger, resulting in a decay
width which is four times larger for Sh and 30% smaller for
Sg. The corrections in Sg remain very small while those in

Sh are now �7%. For the decay into the first two gener-
ations, where the slepton mixing is usually negligible, both
scenarios have very small partial widths.

FIG. 20 (color online). �ð~�0
4 ! ~�0

3ZÞ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the
parameters chosen according to Table I, with ’M1

varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.

FIG. 21 (color online). �ð~�0
4 ! �þ~��1 Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the

parameters chosen according to Table I, with ’M1
varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.
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The results for the decay ~�0
4 ! ��~�

y
� are shown in

Fig. 23. Here, the gaugino-like neutralino has a decay
width which is roughly the sum of decay widths for ~�0

4 !
��~�þ1 and ~�0

4 ! ��~�þ2 , i.e., �0:7 GeV for Sg and

�0:05 GeV for Sh. The radiative corrections are �0:5%
in Sg and �� 6% in Sh.

In Sg, where the neutralino is gaugino-like, the branch-

ing ratios for these tree processes are, respectively,�2:5%,
�2%, and �5%. Taking into account the charged conju-
gated processes, this results in a branching ratio of almost
20% for the third lepton family. For the first two gener-
ations, the branching ratios into every left-handed slepton
or sneutrino are �4:5 and 5%, respectively, while the
decays into the right-handed sleptons are negligible.
Therefore, in this class of scenarios, the leptonic decays
could be the dominant ones. In Sh, on the other hand, the
leptonic decays are subdominant, especially for the first
two generations, and mainly due to the small gaugino
component of the decaying neutralino.

In all the decays to leptons, the difference between
the renormalization schemes is negligible, as shown in
Figs. 21–23, and summarized in Table V.

E. Full one-loop results: total decay widths

In this subsection, we briefly show the results for the
total decay widths and the relative corrections of the three
heaviest neutralinos in Sg and Sh. The decay width of ~�0

4,

shown in the lhs of Fig. 24, is almost independent of ’M1
,

as is expected from the heavier neutralino in a GUT-related
scenario. Therefore, the branching ratios can be easily
obtained from the partial widths. The large ’M1

depen-

dence of the single channels is due to the strong effect
on the mixing of the different neutralinos, as already
argued in the preceding subsections. The corrections are
also very small,�� 1%, with the expected dips due to the
thresholds for ~�0

2 ! ~�0
1h1 at ’M1

¼ 35� and 325�, and for

~��
1 ! ~�0

1W
� at ’M1

¼ 125� and 235�.

FIG. 23 (color online). �ð~�0
4 ! ��~�

y
� Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the

parameters chosen according to Table I, with ’M1
varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.

FIG. 22 (color online). �ð~�0
4 ! �þ~��2 Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected decay widths are shown with the

parameters chosen according to Table I, with ’M1
varied. The left plot shows the decay width, and the right plot shows the relative size

of the corrections.
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The total decay width of ~�0
3 is shown in the lhs of Fig. 25.

As already discussed, in Sg the second- and third-lightest

neutralinos have similar masses and have a Higgsino-bino
mixing character which strongly depends on ’M1

. This is

true at the tree level, where the total width goes from
�0:04 GeV for ’M1

¼ 0 to almost three times as much

for ’M1
¼ �, as well as for the loop corrections, which are

of Oð20%Þ. The total width is also significantly smaller
than that of ~�0

4, largely due to the reduced phase space (see

Table II). Here only the leptonic decays and those to Z and
the lightest neutralino are open. On the contrary, in Sh both
~�0
3 and ~�0

4 are Higgsino-dominated and nearly degenerate.

Consequently, the same decay channels are open and their
widths are similar, both at tree level and at one loop.

The total decay width of ~�0
2 is shown in the lhs of Fig. 26.

The strong mixing of the second- and third-lightest neu-
tralinos in Sg has already been discussed. The same decay

channels as for ~�0
3 are open, except for that to Z and the

lightest neutralino, which is only open for j’M1
j< 32�.

However, the decay to Z is subdominant with a BR smaller
than 1%. The threshold effect we observe in the right panel
for the relative corrections is due to the decay into the
lightest Higgs boson, as already discussed in this section
for those decays with final ~�0

2.
7 The decay width and its

relative correction show a complementary behavior to the
corresponding ones for the third-lightest neutralino, i.e.,
the dependence on ’M1

of the sum of both widths is much

weaker, with corrections of �10%.
In Sh, again, the neutralinos do not strongly mix, and

~�0
2 is wino-dominated. Here the decays into left-handed

FIG. 24 (color online). �totð~�0
4Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected total decay widths are shown with the

parameters chosen according to Table I, with ’M1
varied. The left panel shows the decay width, and the right panel shows the

corresponding relative size of the corrections.

FIG. 25 (color online). �totð~�0
3Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected total decay widths are shown with the

parameters chosen according to Table I, with ’M1
varied. The left panel shows the decay width, and the right panel shows the

corresponding relative size of the corrections.

7It should be noted that this effect, due to the singularity of the
wave function renormalization, is characteristic of on-shell
renormalization schemes, which are less precise when thresholds
of external particles are open. The masses entering these thresh-
olds are the tree-level ones, which in the case of the lightest
Higgs boson is close to that of the Z boson. The renormalized
lightest Higgs boson, on the other hand, has a mass of
�126 GeV, and the decay is closed.
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sleptons or sneutrinos dominate due to the strong wino
coupling. However, the subdominant decays to the lightest
neutralino, and Z or Higgs bosons become the only open
channels if the sleptons are chosen to be heavier. These
decays show a strong (and complementary) dependence on
’M1

due to the change in the relative CP parity of the two

lightest neutralinos.

F. Differences between the renormalization schemes

In our benchmark scenarios Sg and Sh we have found

remarkably good agreement between the two schemes. For
most decay channels, the difference between the relative
corrections to the partial widths ��=� for schemes I and II
is on the order of 10�5. In Table V, we show this difference
for all the decay channels, in both Sg and Sh, and find that

the largest differences are observed in ~�0
4 ! ~�0

1h1;2;3,
~�0
4 ! ~�0

2h2, ~�
0
4 ! ~�0

3h1, and ~�0
4 ! ~�0

1;2Z. In Fig. 27, we

highlight these differences in Sg for ~�0
4 ! ~�0

1Z and

~�0
4 ! ~�0

1h1. To be precise, in this figure we compare the

full one-loop correction �� calculated in scheme I, both
with and without the squark shifts (see the end of Sec. II B),
to that calculated in scheme II, where squark shifts are
not included. One can see that at ’M1

¼ 0� and 180� the

difference between the results without squark shifts van-
ishes, confirming that the schemes differ only in the treat-
ment of the phases. One can also clearly see the impact of
the squark shifts on the size of the one-loop correction.
Earlier in this section, it was noted that larger differences
between the schemes are observed when the tree-level
decay width depends strongly on the phase ’M1

. This

explains why decays to the lightest neutralino are the
most strongly affected ones. Also, the differences are in
general much more pronounced in Sg than in Sh, due to the

mixing between the bino and Higgsino components, except
for the decays into sleptons or a W boson, where the
Higgsino component has a negligible role.

FIG. 26 (color online). �totð~�0
2Þ. Tree-level (‘‘tree’’) and full one-loop (‘‘full’’) corrected total decay widths are shown with the

parameters chosen according to Table I, with ’M1
varied. The left panel shows the decay width, and the right panel shows the

corresponding relative size of the corrections.

FIG. 27 (color online). �ð~�0
4 ! ~�0

1ZÞ and �ð~�0
4 ! ~�0

1h1Þ. The one-loop (‘‘full’’) correction to the partial decay widths are shown as a
function of ’M1

. The parameters are chosen according to Tab. I. Also shown is the correction without including the shifts in the squark

sector (‘‘full no �~q’’).
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V. CONCLUSIONS

We have evaluated all nonhadronic two-body decay
widths of neutralinos in the cMSSM. Assuming heavy
scalar quarks, we take into account all decay channels
involving charginos, neutralinos, (scalar) leptons, Higgs
bosons and SM gauge bosons. The decay modes are given
in Eqs. (3)–(5). The evaluation of the decay widths is based
on a full one-loop calculation including hard and soft
QED radiation. Such a calculation is necessary to derive
a reliable prediction of any two-body branching ratio.
Three-body decay modes can become sizable only if all
the two-body channels are kinematically (nearly) closed
and have thus been neglected throughout the paper. The
same applies to two-body decay modes that appear only at
the one-loop level.

We first reviewed the one-loop renormalization of the
cMSSM, concentrating on the most relevant aspects for our
calculation, except for the details for the Higgs boson
sector, which can be found in Ref. [46]. More importantly,
we have given details for the chargino/neutralino sector
in the two on-shell renormalization schemes which we
have compared in this work. The two schemes differ in
the treatment of complex contributions in the chargino/
neutralino sector. The different renormalization of the
CP -violating phases leads to small differences in the
cMSSM, which are, however, of higher order in the elec-
troweak coupling and vanish in the limit of real couplings.
Differences indicate the size of unknown higher-order
corrections involving complex phases beyond the one-
loop level. We have also discussed the calculation of the
one-loop diagrams, and the treatment of UV and IR diver-
gences that are canceled by the inclusion of soft QED
radiation. Our calculation setup can easily be extended to
other two-body decays involving (scalar) quarks. We have
taken into account all absorptive contributions, explicitly
inlcuding those of self-energy type on external legs.
This ensures that all CP -violating effects are correctly
accounted for.

In the numerical analysis, we mainly concentrated on the
decays of the heaviest neutralino, ~�0

4. For this analysis we

have chosen a parameter set that allows simultaneously all
two-body decay modes under investigation, and respects
the current experimental bounds on Higgs boson and
SUSY searches (where the combination of low MH� and
relatively large tan� is in a potential conflict with the most
recent LHC searches for the heavy MSSM Higgs bosons).
The masses of the charginos, and thus roughly those of the
second and fourth neutralino, are in this scenario, respec-
tively, 350 and 600 GeV. This leads to two representative
scenarios for the chargino/neutralino sector, for�>M2 or
�<M2. These benchmark scenarios allow copious pro-
duction of the neutralinos in SUSY cascades at the LHC.
Furthermore, the production of ~�0

4 ~�
0
j at the ILC 1000, i.e.,

with
ffiffiffi
s

p ¼ 1000 GeV, via eþe� ! ~�0
4 ~�

0
j will be possible,

with all the subsequent decay modes [Eqs. (3)–(6)] being

(in principle) open. The clean environment of the ILC
would then permit a detailed, statistically dominated study
of the neutralino decays. Depending on the channel and the
polarization, a precision at the percent level seems to be
achievable. Special attention is paid to neutralino decays
involving the lightest supersymmetric particle (LSP), i.e.,
the lightest neutralino, or a neutral or charged Higgs boson.
We have shown results for varying ’M1

, the phase of the

soft SUSY-breaking parameter M1, which leads to CP
violation in the chargino and neutralino sectors. We have
analyzed the tree-level and full one-loop results for all
kinematically open decay channels of the heaviest neutra-
lino. For the decays of the second and third neutralinos, we
have only shown the total widths.
We found sizable corrections in many of the decay

channels. The higher-order corrections of the neutralino
decay widths involving the LSP are generically up to a
level of about 10%, and decay modes involving Higgs
bosons can easily have corrections up to 20–30%. The size
of the full one-loop corrections to the decay widths and the
branching ratios also depends strongly on ’M1

, especially

for those decays in which an external neutralino is a mixed
Higgsino-bino state. We conclude that the largest effect of
the radiative corrections is due to its effect on the mixing of
the neutralinos. All results on partial decay widths of ~�0

4, as

well as the total decay widths of all neutralinos, are given
in detail in Sec. IV.
For the two on-shell renormalization schemes consid-

ered, we have found very good agreement: the difference
between the relative size of the corrections is found to be
& 0:1%. The largest differences have been found for
decays with a strong dependence on the parameter ’M1

.

The good agreement between the two schemes is not
unexpected, as they are found to be equivalent up to a
higher-order effect, as discussed in Sec. IV F.
The numerical results we have shown are, of course,

dependent on the choice of MSSM parameters.
Nevertheless, they give an idea of the relevance of the full
one-loop corrections. For other choices of SUSY masses,
the corrections to the decay widths would stay the same,
but the branching ratios would look very different.
Channels for which the decay width (and its respective
one-loop corrections) may look unobservable due to the
smallness of the BR in our numerical examples could
become important if other channels are kinematically
forbidden.
Following our analysis, it is evident that the full one-

loop corrections are mandatory for a precise prediction of
the various branching ratios. This applies to LHC analyses,
but even more to analyses at the ILC or CLIC, where a
precision at the percent level is anticipated for the deter-
mination of neutralino branching ratios (depending on the
neutralino masses, the center-of-mass energy and the inte-
grated luminosity). The results for the neutralino decays
will be implemented into the Fortran code FeynHiggs.
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APPENDIX: TREE-LEVEL RESULTS

For completeness, we include here the expressions for
the tree-level decay widths:

�treeð~�0
i ! ~��

j H
þÞ ¼ ½ðjCð~�0

i ; ~�
þ
j ;H

�ÞLj2 þ jCð~�0
i ; ~�

þ
j ;H

�ÞRj2Þðm2
~�0
i

þm2
~��
j
�M2

H�Þ

þ 4RefCð~�0
i ; ~�

þ
j ;H

�Þ�LCð~�0
i ; ~�

þ
j ;H

�ÞRgm~�0
i
m~��

j
�
�1=2ðm2

~�0
i

;m2
~��
j
;M2

H�Þ
32�m3

~�0
i

ði¼ 2;3;4; j¼ 1; ð2ÞÞ;

(A1)

�treeð~�0
i ! ~��

j W
þÞ ¼

�
ðjCð~�0

i ; ~�
þ
j ;W

�ÞLj2 þjCð~�0
i ; ~�

þ
j ;W

�ÞRj2Þ
�
m2

~�0
i

þm2
~��
j
� 2M2

W þ
ðm2

~�0
i

�m2
~��
j
Þ2

M2
W

	

� 12RefCð~�0
i ; ~�

þ
j ;W

�Þ�LCð~�0
i ; ~�

þ
j ;W

�ÞRgm~�0
i
m~��

j

��1=2ðm2
~�0
i

;m2
~��
j
;M2

WÞ
32�m3

~�0
i

ði¼ 2;3;4; j¼ 1; ð2ÞÞ;

(A2)

�treeð~�0
i ! ~�0

jhkÞ ¼ ½ðjCð~�0
i ; ~�

0
j ; hkÞLj2 þ jCð~�0

i ; ~�
0
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~�0
i

þm2
~�0
j

�m2
hk
Þ

þ 4RefCð~�0
i ; ~�

0
j ; hkÞ�LCð~�0
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0
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�
�1=2ðm2

~�0
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~�0
j

;m2
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32�m3
~�0
i
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~�0
i

þm2
~�0
j

�m2
hk
Þþ 2RefðCð~�0
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i
m~�0
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�

�
�1=2ðm2

~�0
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16�m3
~�0
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0
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�treeð~�0
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where �ðx; y; zÞ ¼ ðx� y� zÞ2 � 4yz, and the couplings Cða; b; cÞ can be found in the FeynArts model files [82].
Cða; b; cÞL;R denote the part of the coupling which is proportional to !� ¼ 1

2 ð1� �5Þ.
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Lett. B 416, 345 (1998); 425, 322 (1998).

[77] D. Demir, O. Lebedev, K. Olive, M. Pospelov, and A. Ritz,
Nucl. Phys. B680, 339 (2004).

[78] D. Chang, W.Y. Keung, and A. Pilaftsis, Phys. Rev. Lett.
82, 900 (1999); 83, 3972(E) (1999); A. Pilaftsis, Phys.
Lett. B 471, 174 (1999).

[79] O. Lebedev, K.A. Olive, M. Pospelov, and A. Ritz, Phys.
Rev. D 70, 016003 (2004).

[80] J. Lee, A. Pilaftsis, M. Carena, S. Choi, M. Drees, J. Ellis,
and C. Wagner, Comput. Phys. Commun. 156, 283 (2004).

[81] W. Oeller, H. Eberl, and W. Majerotto, Phys. Rev. D 71,
115002 (2005).

[82] The couplings can be found in the files MSSM.ps.gz,
MSSMQCD.ps.gz, and HMix.ps.gz as part of the
FeynArts package [61].

NEUTRALINO DECAYS IN THE COMPLEX MSSM AT ONE . . . PHYSICAL REVIEW D 86, 075023 (2012)

075023-29

http://dx.doi.org/10.1007/JHEP01(2010)108
http://dx.doi.org/10.1007/JHEP01(2010)108
http://dx.doi.org/10.1103/PhysRevD.85.075013
http://dx.doi.org/10.1103/PhysRevD.85.075013
http://dx.doi.org/10.1007/s100520100679
http://dx.doi.org/10.1007/s100520100679
http://dx.doi.org/10.1103/PhysRevD.80.076010
http://dx.doi.org/10.1103/PhysRevD.80.076010
http://dx.doi.org/10.1016/j.nuclphysb.2011.03.018
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.033
http://dx.doi.org/10.1140/epjc/s10052-012-1892-6
http://dx.doi.org/10.1103/PhysRevD.86.035014
http://dx.doi.org/10.1140/epjc/s2003-01152-2
http://dx.doi.org/10.1016/S0010-4655(99)00364-1
http://dx.doi.org/10.1016/S0010-4655(99)00364-1
http://www.feynhiggs.de
http://www.feynhiggs.de
http://dx.doi.org/10.1007/s100520050537
http://dx.doi.org/10.1007/s100520050537
http://dx.doi.org/10.1088/1126-6708/2007/02/047
http://arXiv.org/abs/1204.4001
http://arXiv.org/abs/1202.6284
http://dx.doi.org/10.1007/s10052-002-0992-0
http://www-itp.particle.uni-karlsruhe.de/diplomatheses.de.shtml
http://www-itp.particle.uni-karlsruhe.de/diplomatheses.de.shtml
http://dx.doi.org/10.1103/PhysRevD.82.075010
http://dx.doi.org/10.1103/PhysRevD.82.075010
http://arXiv.org/abs/1012.4572
http://dx.doi.org/10.1103/PhysRevD.59.115007
http://dx.doi.org/10.1103/PhysRevLett.78.3626
http://dx.doi.org/10.1103/PhysRevD.57.4179
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevD.16.1791
http://dx.doi.org/10.1016/0550-3213(96)00065-X
http://dx.doi.org/10.1016/0550-3213(96)00065-X
http://dx.doi.org/10.1016/0010-4655(90)90001-H
http://dx.doi.org/10.1016/0010-4655(90)90001-H
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://dx.doi.org/10.1016/S0010-4655(01)00436-2
http://www.feynarts.de
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://dx.doi.org/10.1016/S0550-3213(98)00645-2
http://dx.doi.org/10.1016/0370-2693(79)90282-X
http://dx.doi.org/10.1016/0550-3213(80)90244-8
http://dx.doi.org/10.1016/0550-3213(80)90244-8
http://dx.doi.org/10.1088/1126-6708/2005/03/076
http://dx.doi.org/10.1016/j.physletb.2006.01.030
http://dx.doi.org/10.1002/prop.19930410402
http://arXiv.org/abs/1110.2421
http://arXiv.org/abs/1207.2757
http://dx.doi.org/10.1016/j.physletb.2012.05.028
http://dx.doi.org/10.1016/j.physletb.2012.05.028
http://dx.doi.org/10.1140/epjc/s2002-01084-3
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1140/epjc/s10052-009-1042-y
http://dx.doi.org/10.1103/PhysRevLett.97.131801
http://dx.doi.org/10.1103/PhysRevLett.88.071805
http://dx.doi.org/10.1103/PhysRevLett.102.101601
http://dx.doi.org/10.1103/PhysRevLett.102.101601
http://dx.doi.org/10.1016/S0370-2693(97)01259-8
http://dx.doi.org/10.1016/S0370-2693(97)01259-8
http://dx.doi.org/10.1016/S0370-2693(98)00247-0
http://dx.doi.org/10.1016/j.nuclphysb.2003.12.026
http://dx.doi.org/10.1103/PhysRevLett.82.900
http://dx.doi.org/10.1103/PhysRevLett.82.900
http://dx.doi.org/10.1103/PhysRevLett.83.3972
http://dx.doi.org/10.1016/S0370-2693(99)01359-3
http://dx.doi.org/10.1016/S0370-2693(99)01359-3
http://dx.doi.org/10.1103/PhysRevD.70.016003
http://dx.doi.org/10.1103/PhysRevD.70.016003
http://dx.doi.org/10.1016/S0010-4655(03)00463-6
http://dx.doi.org/10.1103/PhysRevD.71.115002
http://dx.doi.org/10.1103/PhysRevD.71.115002

