348 research outputs found
Squirrelpox virus: assessing prevalence, transmission and environmental degradation
Red squirrels (Sciurus vulgaris) declined in Great Britain and Ireland during the last century, due to habitat loss and the introduction of grey squirrels (Sciurus carolinensis), which competitively exclude the red squirrel and act as a reservoir for squirrelpox virus (SQPV). The disease is generally fatal to red squirrels and their ecological replacement by grey squirrels is up to 25 times faster where the virus is present. We aimed to determine: (1) the seropositivity and prevalence of SQPV DNA in the invasive and native species at a regional scale; (2) possible SQPV transmission routes; and, (3) virus degradation rates under differing environmental conditions. Grey (n = 208) and red (n = 40) squirrel blood and tissues were sampled. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) techniques established seropositivity and viral DNA presence, respectively. Overall 8% of squirrels sampled (both species combined) had evidence of SQPV DNA in their tissues and 22% were in possession of antibodies. SQPV prevalence in sampled red squirrels was 2.5%. Viral loads were typically low in grey squirrels by comparison to red squirrels. There was a trend for a greater number of positive samples in spring and summer than in winter. Possible transmission routes were identified through the presence of viral DNA in faeces (red squirrels only), urine and ectoparasites (both species). Virus degradation analyses suggested that, after 30 days of exposure to six combinations of environments, there were more intact virus particles in scabs kept in warm (25°C) and dry conditions than in cooler (5 and 15°C) or wet conditions. We conclude that SQPV is present at low prevalence in invasive grey squirrel populations with a lower prevalence in native red squirrels. Virus transmission could occur through urine especially during warm dry summer conditions but, more notably, via ectoparasites, which are shared by both species
The dynamics of measles in sub-Saharan Africa.
Although vaccination has almost eliminated measles in parts of the world, the disease remains a major killer in some high birth rate countries of the Sahel. On the basis of measles dynamics for industrialized countries, high birth rate regions should experience regular annual epidemics. Here, however, we show that measles epidemics in Niger are highly episodic, particularly in the capital Niamey. Models demonstrate that this variability arises from powerful seasonality in transmission-generating high amplitude epidemics-within the chaotic domain of deterministic dynamics. In practice, this leads to frequent stochastic fadeouts, interspersed with irregular, large epidemics. A metapopulation model illustrates how increased vaccine coverage, but still below the local elimination threshold, could lead to increasingly variable major outbreaks in highly seasonally forced contexts. Such erratic dynamics emphasize the importance both of control strategies that address build-up of susceptible individuals and efforts to mitigate the impact of large outbreaks when they occur
Herd-level risk factors associated with Leptospira Hardjo seroprevalence in Beef/Suckler herds in the Republic of Ireland
<p>Abstract</p> <p>Background</p> <p>The aim of the present study was to investigate risk factors for herd seropositivity to <it>Leptospira </it>Hardjo in Irish suckler herds. Herds were considered eligible for the study if they were unvaccinated and contained ≥ 9 breeding animals of beef breed which were ≥ 12 months of age. The country was divided into six regions using county boundaries. Herd and individual animal prevalence data were available from the results of a concurrent seroprevalence study. Herds were classified as either "Free from Infection" or "Infected" based on a minimum expected 40% within-herd prevalence.</p> <p>Questionnaires were posted to 320 farmers chosen randomly from 6 regions, encompassing 25 counties, of the Republic of Ireland. The questionnaire was designed to obtain information about vaccination; reproductive disease; breeding herd details; the presence of recognized risk factors from previous studies; and husbandry on each farm. Data collected from 128 eligible herds were subjected to statistical analysis.</p> <p>Results</p> <p>Following the use of Pearson's Chi-Square Test, those variables associated with a herd being "infected" with a significance level of P < 0.2 were considered as candidates for multivariable logistic regression modelling. Breeding herd size was found to be a statistically significant risk factor after multivariable logistic regression. The odds of a herd being positive for leptospiral infection were 5.47 times higher (P = 0.032) in herds with 14 to 23 breeding animals compared with herds with ≤ 13 breeding animals, adjusting for Region, and 7.08 times higher (P = 0.033) in herds with 32.6 to 142 breeding animals.</p> <p>Conclusions</p> <p>Breeding herd size was identified as a significant risk factor for leptospiral infection in Irish suckler herds, which was similar to findings of previous studies of leptospirosis in dairy herds.</p
Expanding the Diagnostic Use of PCR in Leptospirosis: Improved Method for DNA Extraction from Blood Cultures
Background: Leptospirosis is a neglected zoonosis of ubiquitous distribution. Symptoms are often non-specific and may range from flu-like symptoms to multi-organ failure. Diagnosis can only be made by specific diagnostic tests like serology and PCR. In non-endemic countries, leptospirosis is often not suspected before antibiotic treatment has been initiated and consequently, relevant samples for diagnostic PCR are difficult to obtain. Blood cultures are obtained from most hospitalized patients before antibiotic therapy and incubated for at least five days, thus providing an important source of blood for PCR diagnosis. However, blood cultures contain inhibitors of PCR that are not readily removed by most DNAextraction methods, primarily sodium polyanetholesulfonate (SPS). Methodology/Principal Findings: In this study, two improved DNA extraction methods for use with blood cultures are presented and found to be superior in recovering DNA of Leptospira interrogans when compared with three previously described methods. The improved methods were easy and robust in use with all tested brands of blood culture media. Applied to 96 blood cultures obtained from 36 patients suspected of leptospirosis, all seven patients with positive convalescence serology were found positive by PCR if at least one anaerobic and one aerobic blood culture, sampled before antibiotic therapy were tested. Conclusions/Significance: This study suggests that a specific and early diagnosis can be obtained in most cases of sever
Leptospirosis in American Samoa – Estimating and Mapping Risk Using Environmental Data
Leptospirosis is the most common bacterial infection transmitted from animals to humans. Infected animals excrete the bacteria in their urine, and humans can become infected through contact with animals or a contaminated environment such as water and soil. Environmental factors are important in determining the risk of human infection, and differ between ecological settings. The wide range of risk factors include high rainfall and flooding; poor sanitation and hygiene; urbanisation and overcrowding; contact with animals (including rodents, livestock, pets, and wildlife); outdoor recreation and ecotourism; and environmental degradation. Predictive risk maps have been produced for many infectious diseases to identify high-risk areas for transmission and guide allocation of public health resources. Maps are particularly useful where disease surveillance and epidemiological data are poor. The objectives of this study were to estimate leptospirosis seroprevalence at geographic locations based on environmental factors, produce a predictive disease risk map for American Samoa, and assess the accuracy of the maps in predicting infection risk. This study demonstrated the value of geographic information systems and disease mapping for identifying environmental risk factors for leptospirosis, and enhancing our understanding of disease transmission. Similar principles could be used to investigate the epidemiology of leptospirosis in other areas
Performance of aquatic plant species for phytoremediation of arsenic-contaminated water
This study investigates the effectiveness of aquatic macrophyte and microphyte for phytoremediation of water bodies contaminated with high arsenic concentration. Water hyacinth (Eichhornia crassipes) and two algae (Chlorodesmis sp. and Cladophora sp.) found near arsenic-enriched water bodies were used to determine their tolerance toward arsenic and their effectiveness to uptake arsenic thereby reducing organic pollution in arsenic-enriched wastewater of different concentrations. Parameters like pH, chemical oxygen demand (COD), and arsenic concentration were monitored. The pH of wastewater during the course of phytoremediation remained constant in the range of 7.3–8.4, whereas COD reduced by 50–65 % in a period of 15 days. Cladophora sp. was found to survive up to an arsenic concentration of 6 mg/L, whereas water hyacinth and Chlorodesmis sp. could survive up to arsenic concentrations of 2 and 4 mg/L, respectively. It was also found that during a retention period of 10 days under ambient temperature conditions, Cladophora sp. could bring down arsenic concentration from 6 to <0.1 mg/L, Chlorodesmis sp. was able to reduce arsenic by 40−50 %; whereas, water hyacinth could reduce arsenic by only 20 %. Cladophora sp. is thus suitable for co-treatment of sewage and arsenic-enriched brine in an algal pond having a retention time of 10 days. The identified plant species provides a simple and cost-effective method for application in rural areas affected with arsenic problem. The treated water can be used for irrigation
Comparative study between the Hybrid Capture II test and PCR based assay for the detection of human papillomavirus DNA in oral submucous fibrosis and oral squamous cell carcinoma
<p>Abstract</p> <p>Background</p> <p>Oral malignancy is a major global health problem. Besides the main risk factors of tobacco, smoking and alcohol, infection by human papillomavirus (HPV) and genetic alterations are likely to play an important role in these lesions. The purpose of this study was to compare the efficacy of HC-II assay and PCR for the detection of specific HPV type (HPV 16 E6) in OSMF and OSCC cases as well as find out the prevalence of the high risk HPV (HR-HPV) in these lesions.</p> <p>Methods and materials</p> <p>Four hundred and thirty patients of the potentially malignant and malignant oral lesions were taken from the Department of Otorhinolaryngology, Moti Lal Nehru Medical College, Allahabad, India from Sept 2007-March 2010. Of which 208 cases were oral submucous fibrosis (OSMF) and 222 cases were oral squamous cell carcinoma (OSCC). The HC-II assay and PCR were used for the detection of HR-HPV DNA.</p> <p>Result</p> <p>The overall prevalence of HR-HPV 16 E6 DNA positivity was nearly 26% by PCR and 27.4% by the HC-II assay in case of potentially malignant disorder of the oral lesions such as OSMF. However, in case of malignant oral lesions such as OSCC, 32.4% HPV 16 E6 positive by PCR and 31.4% by the HC-II assay. In case of OSMF, the two test gave concordant result for 42 positive samples and 154 negative samples, with an overall level of agreement of 85.4% (Cohen's kappa = 66.83%, 95% CI 0.553-0.783). The sensitivity and specificity of the test were 73.7% and 92.05% (p < 0.00). In case of OSCC, the two test gave concordant result for 61 positive samples and 152 negative samples, with an overall level of agreement of 88.3% (Cohen's kappa = 79.29, 95% CI 0.769-0.939) and the sensitivity and specificity of the test were 87.14% and 92.76% (p < 0.00).</p> <p>Conclusion</p> <p>This study concluded that slight difference was found between the positivity rate of HR-HPV infection detected by the HC-II and PCR assay in OSMF and OSCC cases and the HC II assay seemed to have better sensitivity in case of OSCC.</p
Application and Validation of PFGE for Serovar Identification of Leptospira Clinical Isolates
Serovar identification of clinical isolates of Leptospira is generally not performed on a routine basis, yet the identity of an infecting serovar is valuable from both epidemiologic and public health standpoints. Only a small number of reference laboratories worldwide have the capability to perform the cross agglutinin absorption test (CAAT), the reference method for serovar identification. Pulsed-field gel electrophoresis (PFGE) is an alternative method to CAAT that facilitates rapid identification of leptospires to the serovar level. We employed PFGE to evaluate 175 isolates obtained from humans and animals submitted to the Centers for Disease Control and Prevention (CDC) between 1993 and 2007. PFGE patterns for each isolate were generated using the NotI restriction enzyme and compared to a reference database consisting of more than 200 reference strains. Of the 175 clinical isolates evaluated, 136 (78%) were identified to the serovar level by the database, and an additional 27 isolates (15%) have been identified as probable new serovars. The remaining isolates yet to be identified are either not represented in the database or require further study to determine whether or not they also represent new serovars. PFGE proved to be a useful tool for serovar identification of clinical isolates of known serovars from different geographic regions and a variety of different hosts and for recognizing potential new serovars
A NEW POSSIBILITY FOR SURVEILLANCE: DO WE IDENTIFY ALL CASES OF LEPTOSPIROSIS?
SUMMARY Leptospirosis is a febrile disease with a typically underestimated global incidence, especially in regions where dengue is endemic. Therefore, it is difficult to accurately determine the number of leptospirosis cases in these areas, which contributes to significant under-reporting this disease. In this study, we estimated the number of possible leptospirosis cases among dengue-like cases that were reported during 2008, 2010, and 2012 in the city of Fortaleza, northeast Brazil. Patients were evaluated for dengue and leptospirosis using immunoenzymatic tests for IgM antibodies that were specific to each pathogen. Among the suspected cases of dengue that resulted as negative in laboratory tests, 10.8% (2008), 19.2% (2010), and 30.8% (2012) were confirmed to be leptospirosis. Considering the cases reported by the surveillance authority as dengue that were subsequently discarded based on the laboratory test results, we estimate that the number of actual leptospirosis cases may be 26 to 49 times higher than those diagnosed and reported by the Health Services. Furthermore, we believe that approximately 20% of dengue-like cases may be leptospirosis cases in areas where the two diseases are endemic
- …