1,206 research outputs found

    Employing infrared microscopy (IRM) in combination with a pre-trained neural network to visualise and analyse the defect distribution in Cadmium Telluride crystals

    Get PDF
    While Cadmium Telluride (CdTe) excels in terms of photon radiation absorption properties and outperforms silicon (Si) in this respect, the crystal growth, characterization and processing into a radiation detector is much more complicated. Additionally, large concentrations of extended crystallographic defects, such as grain boundaries, twins, and tellurium (Te) inclusions, vary from crystal to crystal and can reduce the spectroscopic performance of the processed detector. A quality assessment of the material prior to the complex fabrication process is therefore crucial. To locate the Te-defects, we scan the crystals with infrared microscopy (IRM) in different layers, obtaining a 3D view of the defect distribution. This provides us with important information on the defect density and locations of Te inclusions, and thus a handle to assess the quality of the material. For the classification of defects in the large amount of IRM image data, a convolutional neural network is employed. From the post-processed and analysed IRM data, 3D defect maps of the CdTe crystals are created, which make different patterns of defect agglomerations inside the crystals visible. In total, more than 100 crystals were scanned with the current IRM setup. In this paper, we compare two crystal batches, each consisting of 12 samples. We find significant differences in the defect distributions of the crystals.Peer reviewe

    Modeling the impact of defects on the charge collection efficiency of a Cadmium Telluride detector

    Get PDF
    Cadmium telluride is a favorable material for X-ray detection as it has an outstanding characteristic for room temperature operation. It is a high-Z material with excellent photon radiation absorption properties. However, CdTe single crystals may include a large number of extended crystallographic defects, such as grain boundaries, twins, and tellurium (Te) inclusions, which can have an impact on detector performance. A Technology Computer Aided Design (TCAD) local defect model has been developed to investigate the effects of local defects on charge collection efficiency (CCE). We studied a 1 mm thick Schottky-type CdTe radiation detector with transient current technique by using a red laser at room temperature. By raster scanning the detector surface we were able to study signal shaping within the bulk, and to locate surface defects by observing their impact on the CCE. In this paper we present our TCAD model with localized defect, and compare the simulation results to TCT measurements. In the model an inclusion with a diameter of 10 mu m was assumed. The center of the defect was positioned at 6 mu m distance from the surface. We show that the defect has a notable effect on current transients, which in turn affect the CCE of the CdTe detector. The simulated charge collection at the position of the defect decreases by 80 % in comparison to the defect-free case. The simulations show that the defects give a characteristic shape to TCT signal. This can further be used to detect defects in CdTe detectors and to estimate the overall defect density in the material.Peer reviewe

    Processing of AC-coupled n-in-p pixel detectors on MCz silicon using atomic layer deposited aluminium oxide

    Get PDF
    We report on the fabrication of capacitively (AC) coupled n(+)-in-p pixel detectors on magnetic Czochralski silicon substrates. In our devices, we employ a layer of aluminium oxide (Al2O3) grown by atomic layer deposition (ALD) as dielectric and field insulator, instead of the commonly used silicon dioxide (SiO2). As shown in earlier research, Al2O3 thin films exhibit high negative oxide charge, and can thus serve as a substitute for p-stop/p-spray insulation implants between pixels. In addition, they provide far higher capacitance densities than SiO2 due to their high dielectric constant, permitting more efficient capacitive coupling of pixels. Furthermore, metallic titanium nitride (TiN) bias resistors are presented as an alternative to punch-through or poly-Si resistors. Devices obtained by the above mentioned process are characterized by capacitance-voltage and current-voltage measurements, and by 2 MeV proton microprobe. Results show the expected high negative charge of the Al2O3 dielectric, uniform charge collection efficiency over large areas of pixels, and acceptable leakage current densities.Peer reviewe

    Quality assessment of cadmium telluride as a detector material for multispectral medical imaging

    Get PDF
    Cadmiumtelluride (CdTe) is a high-Z material with excellent photon radiation absorption properties, making it a promising material to include in radiation detection technologies. However, the brittleness of CdTe crystals as well as their varying concentration of defects necessitate a thorough quality assessment before the complex detector processing procedure. We present our quality assessment of CdTe as a detector material for multispectralmedical imaging, a research which is conducted as part of the Consortium Project Multispectral Photon-counting for Medical Imaging and Beam characterization (MPMIB). The aim of the project is to develop novel CdTe detectors and obtain spectrum-per-pixel information that make the distinction between different radiation types and tissues possible. To evaluate the defect density inside the crystals - which can deteriorate the detector performance - we employ infrared microscopy (IRM). Posterior data analysis allows us to visualise the defect distributions as 3D defect maps. Additionally, we investigate front and backside differences of the material with current-voltage (IV) measurements to determine the preferred surface for the pixelisation of the crystal, and perform test measurements with the prototypes to provide feedback for further processing. We present the different parts of our quality assessment chain and will close with first experimental results obtained with one of our prototype photon-counting detectors in a small tomographic setup.Peer reviewe

    Analysis of the potential of cancer cell lines to release tissue factor-containing microvesicles: correlation with tissue factor and PAR2 expression

    Get PDF
    BackgroundDespite the association of cancer-derived circulating tissue factor (TF)-containing microvesicles and hypercoagulable state, correlations with the incidence of thrombosis remain unclear.MethodsIn this study the upregulation of TF release upon activation of various cancer cell lines, and the correlation with TF and PAR2 expression and/or activity was examined. Microvesicle release was induced by PAR2 activation in seventeen cell lines and released microvesicle density, microvesicle-associated TF activity, and phoshpatidylserine-mediated activity were measured. The time-course for TF release was monitored over 90 min in each cell line. In addition, TF mRNA expression, cellular TF protein and cell-surface TF activities were quantified. Moreover, the relative expression of PAR2 mRNA and cellular protein were analysed. Any correlations between the above parameters were examined by determining the Pearson’s correlation coefficients.ResultsTF release as microvesicles peaked between 30–60 min post-activation in the majority of cell lines tested. The magnitude of the maximal TF release positively correlated with TF mRNA (c = 0.717; p

    Search for heavy resonances decaying to Z(ν¯ν)V(q¯q′) in proton-proton collisions at √s=13  TeV

    Get PDF
    Publisher Copyright: © 2022 CERN.A search is presented for heavy bosons decaying to Z(ν¯ν)V(q¯q′), where V can be a W or a Z boson. A sample of proton-proton collision data at √s=13  TeV was collected by the CMS experiment during 2016–2018. The data correspond to an integrated luminosity of 137  fb−1. The event categorization is based on the presence of high-momentum jets in the forward region to identify production through weak vector boson fusion. Additional categorization uses jet substructure techniques and the presence of large missing transverse momentum to identify W and Z bosons decaying to quarks and neutrinos, respectively. The dominant standard model backgrounds are estimated using data taken from control regions. The results are interpreted in terms of radion, W′ boson, and graviton models, under the assumption that these bosons are produced via gluon-gluon fusion, Drell–Yan, or weak vector boson fusion processes. No evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on various types of hypothetical new bosons. Observed (expected) exclusion limits on the masses of these bosons range from 1.2 to 4.0 (1.1 to 3.7) TeV.Peer reviewe

    Search for electroweak production of charginos and neutralinos in proton-proton collisions at root s=13 TeV

    Get PDF
    A direct search for electroweak production of charginos and neutralinos is presented. Events with three or four leptons, with up to two hadronically decaying tau leptons, or two same-sign light leptons are analyzed. The data sample consists of 137 fb(-1) of proton-proton collisions with a center of mass energy of 13 TeV, recorded with the CMS detector at the LHC. The results are interpreted in terms of several simplified models. These represent a broad range of production and decay scenarios for charginos and neutralinos. A parametric neural network is used to target several of the models with large backgrounds. In addition, results using orthogonal search regions are provided for all the models, simplifying alternative theoretical interpretations of the results. Depending on the model hypotheses, charginos and neutralinos with masses up to values between 300 and 1450 GeV are excluded at 95% confidence level.Peer reviewe

    Probing Charm Quark Dynamics via Multiparticle Correlations in Pb-Pb Collisions at root s(NN)=5.02 TeV

    Get PDF
    Multiparticle azimuthal correlations of prompt D-0 mesons arc measured in Pb-Pb collisions at a nucleon-nucleon center-of-mass energy of root s(NN) = 5.02 TeV. For the first time, a four-particle cumulant method is used to extract the second Fourier coefficient of the azimuthal distribution (v(2)) of D-0 mesons as a function of event centrality and the D-0 transverse momentum. The ratios of the four-particle v(2) values to previously measured two-particle cumulant results provide direct experimental access to event-by-event fluctuations of charm quark azimuthal anisotropies. These ratios are also found to be comparable to those of inclusive charged particles in the event. However, hints of deviations are seen in the most central and peripheral collisions. To investigate the origin of flow fluctuations in the charm sector, these measurements are compared to a model implementing fluctuations of charm quark energy loss via collisional or radiative processes in the quark-gluon plasma. These models cannot quantitatively describe the data over the full transverse momentum and centrality ranges, although the calculations with collisional energy loss provide a better description of the data.Peer reviewe
    • …
    corecore