9 research outputs found

    Study protocol of the Bergen brain-gut-microbiota-axis study: A prospective case-report characterization and dietary intervention study to evaluate the effects of microbiota alterations on cognition and anatomical and functional brain connectivity in patients with irritable bowel syndrome

    Get PDF
    Introduction: Irritable bowel syndrome (IBS) is a common clinical label for medically unexplained gastrointestinal (GI) symptoms, recently described as a disturbance of the brain-gut-microbiota (BGM) axis. To gain a better understanding of the mechanisms underlying the poorly understood etiology of IBS, we have designed a multifaceted study that aim to stratify the complex interaction and dysfunction between the brain, the gut, and the microbiota in patients with IBS. Methods: Deep phenotyping data from patients with IBS (n = 100) and healthy age- (between 18 and 65) and gender-matched controls (n = 40) will be collected between May 2019 and December 2021. Psychometric tests, questionnaires, human biological tissue/samples (blood, faeces, saliva, and GI biopsies from antrum, duodenum, and sigmoid colon), assessment of gastric accommodation and emptying using transabdominal ultrasound, vagal activity, and functional and structural magnetic resonance imaging (MRI) of the brain, are included in the investigation of each participant. A subgroup of 60 patients with IBS-D will be further included in a 12-week low FODMAP dietary intervention-study to determine short and long-term effects of diet on GI symptoms, microbiota composition and functions, molecular GI signatures, cognitive, emotional and social functions, and structural and functional brain signatures. Deep machine learning, prediction tools, and big data analyses will be used for multivariate analyses allowing disease stratification and diagnostic biomarker detection. Discussion: To our knowledge, this is the first study to employ unsupervised machine learning techniques and incorporate systems-based interactions between the central and the peripheral components of the brain-gut-microbiota axis at the levels of the multiomics, microbiota profiles, and brain connectome of a cohort of 100 patients with IBS and matched controls; study long-term safety and efficacy of the low-FODMAP diet on changes in nutritional status, gut microbiota composition, and metabolites; and to investigate changes in the brain and gut connectome after 12 weeks strict low-FODMAP-diet in patients with IBS. However, there are also limitations to the study. As a restrictive diet, the low-FODMAP diet carries risks of nutritional inadequacy and may foster disordered eating patterns. Strict FODMAP restriction induces a potentially unfavourable gut microbiota, although the health effects are unknown.publishedVersio

    Tensor Based Tumor Tissue Type Differentiation Using Magnetic Resonance Spectroscopic Imaging

    Get PDF
    Magnetic resonance spectroscopic imaging (MRSI) has the potential to characterise different tissue types in brain tumors. Blind source separation techniques are used to extract the specific tissue profiles and their corresponding distribution from the MRSI data. A 3-dimensional MRSI tensor is constructed from in vivo 2D-MRSI data of individual tumor patients. Non-negative canonical polyadic decomposition (NCPD) with common factor in mode-1 and mode-2 and l(1) regularization on mode-3 is applied on the MRSI tensor to differentiate various tissue types. Initial in vivo study shows that NCPD has better performance in identifying tumor and necrotic tissue type in high grade glioma patients compared to previous matrix-based decompositions, such as non-negative matrix factorization and hierarchical non-negative matrix factorization.status: publishe

    Canonical polyadic decomposition for tissue type differentiation using multi-parametric MRI in high-grade gliomas

    No full text
    © 2016 IEEE. In diagnosis and treatment planning of brain tumors, characterisation and localization of tissue plays an important role. Blind source separation techniques are generally employed to extract the tissue-specific profiles and its corresponding distribution from the multi-parametric MRI. A 3-dimensional tensor is constructed from in-vivo multiparametric MRI of high grade glioma patients. Constrained canonical polyadic decomposition (CPD) with common factor in mode-1 and mode-2 and l1 regularization on mode-3 is applied on the 3-dimensional multi-parametric tensor to characterize various tissue types. An initial in-vivo study shows that CPD has slightly better performance in identifying active tumor and the tumor core region in high-grade glioma patients compared to hierarchical non-negative matrix factorization.status: publishe

    Tensor-Based Method for Residual Water Suppression in H-1 Magnetic Resonance Spectroscopic Imaging

    No full text
    OBJECTIVE: Magnetic resonance spectroscopic imaging (MRSI) signals are often corrupted by residual water and artifacts. Residual water suppression plays an important role in accurate and efficient quantification of metabolites from MRSI. A tensor-based method for suppressing residual water is proposed. METHODS: A third-order tensor is constructed by stacking the Löwner matrices corresponding to each MRSI voxel spectrum along the third mode. A canonical polyadic decomposition is applied on the tensor to extract the water component and to, subsequently, remove it from the original MRSI signals. RESULTS: The proposed method applied on both simulated and in-vivo MRSI signals showed good water suppression performance. CONCLUSION: The tensor-based Löwner method has better performance in suppressing residual water in MRSI signals as compared to the widely used subspace-based Hankel singular value decomposition method. SIGNIFICANCE: A tensor method suppresses residual water simultaneously from all the voxels in the MRSI grid and helps in preventing the failure of the water suppression in single voxels.status: publishe

    The successive projection algorithm as an initialization method for brain tumor segmentation using non-negative matrix factorization

    Get PDF
    Non-negative matrix factorization (NMF) has become a widely used tool for additive parts-based analysis in a wide range of applications. As NMF is a non-convex problem, the quality of the solution will depend on the initialization of the factor matrices. In this study, the successive projection algorithm (SPA) is proposed as an initialization method for NMF. SPA builds on convex geometry and allocates endmembers based on successive orthogonal subspace projections of the input data. SPA is a fast and reproducible method, and it aligns well with the assumptions made in near-separable NMF analyses. SPA was applied to multi-parametric magnetic resonance imaging (MRI) datasets for brain tumor segmentation using different NMF algorithms. Comparison with common initialization methods shows that SPA achieves similar segmentation quality and it is competitive in terms of convergence rate. Whereas SPA was previously applied as a direct endmember extraction tool, we have shown improved segmentation results when using SPA as an initialization method, as it allows further enhancement of the sources during the NMF iterative procedure.status: publishe

    Study protocol of the Bergen brain-gut-microbiota-axis study: A prospective case-report characterization and dietary intervention study to evaluate the effects of microbiota alterations on cognition and anatomical and functional brain connectivity in patients with irritable bowel syndrome

    No full text
    Introduction: Irritable bowel syndrome (IBS) is a common clinical label for medically unexplained gastrointestinal (GI) symptoms, recently described as a disturbance of the brain-gut-microbiota (BGM) axis. To gain a better understanding of the mechanisms underlying the poorly understood etiology of IBS, we have designed a multifaceted study that aim to stratify the complex interaction and dysfunction between the brain, the gut, and the microbiota in patients with IBS. Methods: Deep phenotyping data from patients with IBS (n = 100) and healthy age- (between 18 and 65) and gender-matched controls (n = 40) will be collected between May 2019 and December 2021. Psychometric tests, questionnaires, human biological tissue/samples (blood, faeces, saliva, and GI biopsies from antrum, duodenum, and sigmoid colon), assessment of gastric accommodation and emptying using transabdominal ultrasound, vagal activity, and functional and structural magnetic resonance imaging (MRI) of the brain, are included in the investigation of each participant. A subgroup of 60 patients with IBS-D will be further included in a 12-week low FODMAP dietary intervention-study to determine short and long-term effects of diet on GI symptoms, microbiota composition and functions, molecular GI signatures, cognitive, emotional and social functions, and structural and functional brain signatures. Deep machine learning, prediction tools, and big data analyses will be used for multivariate analyses allowing disease stratification and diagnostic biomarker detection. Discussion: To our knowledge, this is the first study to employ unsupervised machine learning techniques and incorporate systems-based interactions between the central and the peripheral components of the brain-gut-microbiota axis at the levels of the multiomics, microbiota profiles, and brain connectome of a cohort of 100 patients with IBS and matched controls; study long-term safety and efficacy of the low-FODMAP diet on changes in nutritional status, gut microbiota composition, and metabolites; and to investigate changes in the brain and gut connectome after 12 weeks strict low-FODMAP-diet in patients with IBS. However, there are also limitations to the study. As a restrictive diet, the low-FODMAP diet carries risks of nutritional inadequacy and may foster disordered eating patterns. Strict FODMAP restriction induces a potentially unfavourable gut microbiota, although the health effects are unknown

    Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

    No full text
    Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset
    corecore