43 research outputs found

    Zebrafish: a novel model in neuropsychopharmacological research

    Get PDF
    The zebrafish (danio rerio) has recently become a powerful animal model for research purposes and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. It has emerged as a model species for translational research in various neuroscience areas, including pharmacogenetics and neuropharmacology. Due to their physiological (neuroanatomical, neuroendocrine, neurochemical) and genetic homology to mammals, robust phenotypes, and value in high-throughput genetic and chemical genetic screens, zebrafish are ideal for developing valid experimental models of major neuropsychiatric disorders and discovering novel therapeutics. Both larval and adult zebrafish are presently used to enhance our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. This article provides a review of the developing utility of zebrafish in the analysis of complex brain disorders (including, e.g., depression, autism, psychoses, drug abuse, and cognitive deficits), also covering zebrafish applications towards the goal of modelling major human neuropsychiatric and drug-induced syndromes

    Environmental Life Cycle Assessment of Grid-Integrated Hybrid Renewable Energy Systems in Northern Nigeria

    Get PDF
    Life cycle assessment is a crucial tool in evaluating systems performances for sustainability and decision-making. This paper provided environmental impact of integrating renewable energy systems to the utility-grid based on a baseline optimized energy production data from “HOMER” for renewable systems modelling of a site in northern Nigeria. The ultimate goal was to ascertain the best hybrid option(s) in sustaining the environment. Different assumptions and scenarios were modelled and simulated using Ganzleitlichen Bilanz (GaBi). Uncertainty analysis was ensured to the impact data based on pedigree-matrix and Excel-program, as well as overall policy relevance. The results of the impact categories revealed first scenario (i.e., conventional path-based) with the highest impacts on global warming potential (GWP), acidification potential (AP), human toxicity potential (HTP), and abiotic depletion potential (ADP fossils). The lowest impacts arise in the renewable-based scenarios for all the considered categories except the Ozone-layer depletion potential Category where the highest contribution falls in the third scenario (i.e., photovoltaic (PV)/biomass-biogas system) although all values being infinitesimal. In quantitative terms, the reduction in the GWP from the highest being the first scenario to the lowest being the fourth scenario (i.e., wind/biomass-biogas system) was 96.5%. Hence, with the outstanding contributions of the hybrid renewable systems, adopting them especially the lowest impact scenarios with expansions is relevant for environmental sustainability

    LSTM-SDM: An integrated framework of LSTM implementation for sequential data modeling[Formula presented]

    Get PDF
    LSTM-SDM is a python-based integrated computational framework built on the top of Tensorflow/Keras and written in the Jupyter notebook. It provides several object-oriented functionalities for implementing single layer and multilayer LSTM models for sequential data modeling and time series forecasting. Multiple subroutines are blended to create a conducive user-friendly environment that facilitates data exploration and visualization, normalization and input preparation, hyperparameter tuning, performance evaluations, visualization of results, and statistical analysis. We utilized the LSTM-SDM framework in predicting the stock market index and observed impressive results. The framework can be generalized to solve several other real-world time series problems

    Electrification using Decentralized Micro Hydropower Plants in North-eastern Afghanistan

    Get PDF
    Electricity supply database from the Afghan national authority for electricity supply shows that about only 20% of the population in Afghanistan had access to grid electricity by 2010. The national utility has a total capacity of about 842 MW, out of which about 696 MW was operational. Additionally, many decentralized units (Micro Hydropower (MHP) plants, diesel generators and solar home systems) supply electricity to about 7% of the population. The donors supported National Solidarity Programme (NSP) has promoted hundreds of rural electrification projects. MHP plants are the major renewable energy based projects among them. In order to identify the operational status of installed MHP plants in four North-eastern provinces (i.e. Badakhshan, Baghlan, Balkh and Takhar) and to assess their socio-economic impacts, an extensive field monitoring had been carried out. The major parameters studied were spatial distribution of MHP plants, investment costs, operational models, end user electricity tariffs, productive use of electricity, community satisfaction, etc. Altogether, 421 MHP installations (about 11 MW installed capacity) were visited. The outcomes obtained from those surveys are presented in detail in this paper

    Solar energy powered decentralized smart-grid for sustainable energy supply in low-income countries: analysis considering climate change influences in Togo

    Get PDF
    A smart and decentralized electrical system, powered by grid-connected renewable energy (RE) with a reliable storage system, has the potential to change the future socio-economic dynamics. Climate change may, however, affect the potential of RE and its related technologies. This study investigated the impact of climate change on photovoltaic cells’ temperature response and energy potential under two CO2 emission scenarios, RCP2.6 and 8.5, for the near future (2024–2040) and mid-century (2041–2065) in Togo. An integrated Regional Climate Model version 4 (RegCM4) from the CORDEX-CORE initiative datasets has been used as input. The latter platform recorded various weather variables, such as solar irradiance, air temperature, wind speed and direction, and relative humidity. Results showed that PV cells’ temperature would likely rise over all five regions in the country and may trigger a decline in the PV potential under RCP2.6 and 8.5. However, the magnitude of the induced change, caused by the changing climate, depended on two major factors: (1) the PV technology and (2) geographical position. Results also revealed that these dissimilarities were more pronounced under RCP8.5 with the amorphous technology. It was further found that, nationally, the average cell temperature would have risen by 1 °C and 1.82 °C under RCP2.6 and 8.5, in that order, during the 2024–2065 period for a-Si technology. Finally, the PV potential would likely decrease, on average, by 0.23% for RCP2.6 and 0.4% for RCP8.5 for a-Si technology

    Zebrafish: a novel model in neuropsychopharmacological research

    No full text
    The zebrafish (danio rerio) has recently become a powerful animal model for research purposes and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. It has emerged as a model species for translational research in various neuroscience areas, including pharmacogenetics and neuropharmacology. Due to their physiological (neuroanatomical, neuroendocrine, neurochemical) and genetic homology to mammals, robust phenotypes, and value in high-throughput genetic and chemical genetic screens, zebrafish are ideal for developing valid experimental models of major neuropsychiatric disorders and discovering novel therapeutics. Both larval and adult zebrafish are presently used to enhance our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. This article provides a review of the developing utility of zebrafish in the analysis of complex brain disorders (including, e.g., depression, autism, psychoses, drug abuse, and cognitive deficits), also covering zebrafish applications towards the goal of modelling major human neuropsychiatric and drug-induced syndromes

    Techno-economic feasibility study of solar and wind based irrigation systems in Northern Colombia

    Get PDF
    Water pumping systems powered by solar and wind energy are a clean, decentralized and economic alternative for the irrigation of crops. The intense droughts experienced in the last years in Northern Colombia due to particularly strong Nino Phenomena have reactivated the need of reliable water pumping irrigation systems in that region. This study aims to assess the techno economic feasibility of solar and wind based pumping irrigation system, taking as case study the Municipality of Piojo in the Atlantico department. In the first stage of the study the irrigation water requirements were determined by using the software CROPWAT based on two different crop patterns that represent existing feasible alternatives for small farmers of the region: i) a common crop pattern, which represent the current average distribution of crops for subsistence farming and ii) a fruit cash crop pattern that comprises crops for which well established markets in the region exist. Solar wind and diesel based pumping systems were sized based on the crop water demands for 1 ha. The unit irrigation costs of the three technologies, the two crop patterns and the three irrigation methods (surface, sprinkler and drip) were calculated and compared. The economical analysis was complemented with a cost-benefit analysis over 20 years. Our results show that both renewable energy based pumping systems (wind and solar) can cover the irrigation water demands of small farmers in the region. The economical analysis shows that windmills are the most cost effective solution followed by the solar pumping system. Diesel pumping system was the less cost effective, even though it does not comprise investment in water storage tank. The cost benefit analysis demonstrates that any irrigation system is financially unfeasible when providing water to a common crop pattern. In case of the fruit cash crop scenario the highest dividends were obtained by the wind pumping system and the lowest dividends by the diesel pumping system. The lowest payback period was obtained by the windmill after 7 years and could be even feasible after the fifth year if the surplus water would be used to irrigate larger areas. Dividends obtained in a fruit cash crop scenario with irrigation after 20 years were in the range of EUR 5200 and EUR 11200 higher than dividends obtained by the same crop pattern but without irrigation

    Electricity as a Cooking Means in Nepal—A Modelling Tool Approach

    No full text
    Cooking energy has an important role in energy demand of Nepal. Over the last decade, import of Liquefied Petroleum Gas (LPG) has increased by 3.3 times as an alternate cooking fuel to kerosene and firewood. The growing subsidy burden to endorse modern fuel switching from traditional energy sources and high import of LPG are challenges for sustainability and energy security. This paper analyzes the future residential cooking energy demand and its environmental and economic impacts from 2015 to 2035 using a Long-range Energy Alternative Planning System (LEAP) tool. In 2035, the LPG demand for cooking is projected to be 26.5 million GJ, 16.3 million GJ, 45.2 million GJ and 58.2 million GJ for business as usual (BAU), low growth rate (LGR), medium growth rate (MGR) and high growth rate (HGR) scenarios, respectively. To substitute LPG with electricity in the cooking sector by 2035, an additional 1207 MW, 734 MW, 2055 MW and 2626 MW hydropower installation is required for BAU, LGR, MGR and HGR scenarios, respectively. In the MGR scenario, substituting LPG with electricity could save from 21.8million(2016)to21.8 million (2016) to 70.8 million (2035) each year, which could be used to develop large-scale hydropower projects in the long term

    Analysis of the Levelized Cost of Renewable Hydrogen in Austria

    No full text
    Austria is committed to the net-zero climate goal along with the European Union. This requires all sectors to be decarbonized. Hereby, hydrogen plays a vital role as stated in the national hydrogen strategy. A report commissioned by the Austrian government predicts a minimum hydrogen demand of 16 TWh per year in Austria in 2040. Besides hydrogen imports, domestic production can ensure supply. Hence, this study analyses the levelized cost of hydrogen for an off-grid production plant including a proton exchange membrane electrolyzer, wind power and solar photovoltaics in Austria. In the first step, the capacity factors of the renewable electricity sources are determined by conducting a geographic information system analysis. Secondly, the levelized cost of electricity for wind power and solarphotovoltaics plants in Austria is calculated. Thirdly, the most cost-efficient portfolio of wind power and solar photovoltaics plants is determined using electricity generation profiles with a 10-min granularity. The modelled system variants differ among location, capacity factors of the renewable electricity sources and the full load hours of the electrolyzer. Finally, selected variables are tested for their sensitivities. With the applied model, the hydrogen production cost for decentralized production plants can be calculated for any specific location. The levelized cost of hydrogen estimates range from 3.08 EUR/kg to 13.12 EUR/kg of hydrogen, whereas it was found that the costs are most sensitive to the capacity factors of the renewable electricity sources and the full load hours of the electrolyzer. The novelty of the paper stems from the model applied that calculates the levelized cost of renewable hydrogen in an off-grid hydrogen production system. The model finds a cost-efficient portfolio of directly coupled wind power and solar photovoltaics systems for 80 different variants in an Austria-specific context

    Composting Heat Recovery for Residential Consumption: An Assessment of Viability

    No full text
    The European heating sector is currently heavily dominated by fossil fuels. Composting is a naturally occurring process in which heat is liberated from the composting substrate at a higher rate than the process needs to support itself. This difference could be harnessed for low-heat applications such as residential consumption, alleviating some of the impacts fossil fuel emissions represent. In this study, the composting heat recovery reported in the literature was compared to the energy demand for space and water heating in four European countries. A review of potential heat production from the waste representative of the residential sector was performed. We found that the theoretically recoverable composting heat does not significantly reduce the need for district heating. However, it can significantly reduce the energy demand for water heating, being able to supply countries such as Greece with between 36% and 100% of the yearly hot water demand, or 12% to 53% of the yearly hot water of countries such as Switzerland, depending on the efficiency of heat recovery
    corecore