9 research outputs found

    The influence of T cell development on pathogen specificity and autoreactivity

    Get PDF
    T cells orchestrate adaptive immune responses upon activation. T cell activation requires sufficiently strong binding of T cell receptors on their surface to short peptides derived from foreign proteins bound to protein products of the major histocompatibility (MHC) gene products, which are displayed on the surface of antigen presenting cells. T cells can also interact with peptide-MHC complexes, where the peptide is derived from host (self) proteins. A diverse repertoire of relatively self-tolerant T cell receptors is selected in the thymus. We study a model, computationally and analytically, to describe how thymic selection shapes the repertoire of T cell receptors, such that T cell receptor recognition of pathogenic peptides is both specific and degenerate. We also discuss the escape probability of autoimmune T cells from the thymus.Comment: 12 pages, 7 figure

    Analysis of data on low energy piN-->pipiN reaction. I. Total cross sections

    Full text link
    This is the first of a series of papers on a consistent model independent analysis of the complete experimental information on the reaction πN→ππN\pi N \rightarrow \pi \pi N at pion momenta up to 500 MeV/c. The paper summarizes the theoretical approach and details of the computational procedure. The complete database on total cross sections in 5 ππN\pi \pi N channels is given together with a critical discussion of their model independent analysis.Comment: 45 page

    Effect of lubricant viscosity and surface roughness on coefficient of friction in rolling contact

    No full text
    The main objective of this paper is to investigate the effect of surface roughness and lubricant viscosity on coefficient of friction in silicon nitride‐ steel rolling contact. Two samples of silicon nitride with two different values of surface roughness were tested against steel counter face. The test was performed on four ball tester in presence of lubricant with two different values of viscosity. Taguchi technique a methodology in design of experiment implemented to plan the experimentation and same is utilized to evaluate the interacting effect of surface roughness and lubricant viscosity. Analysis of experimental results presents a strong interaction between surface roughness and lubricant viscosity on coefficient of friction in rolling contact

    Genetics of inflammatory bowel disease

    No full text

    Embryogenesis: Pattern Formation from a Single Cell

    No full text
    During embryogenesis a single cell gives rise to a functional multicellular organism. In higher plants, as in many other multicellular systems, essential architectural features, such as body axes and major tissue layers are established early in embryogenesis and serve as a positional framework for subsequent pattern elaboration. In Arabidopsis, the apicalbasal axis and the radial pattern of tissues wrapped around it are already recognizable in young embryos of only about a hundred cells in size. This early axial pattern seems to provide a coordinate system for the embryonic initiation of shoot and root. Findings from genetic studies in Arabidopsis are revealing molecular mechanisms underlying the initial establishment of the axial core pattern and its subsequent elaboration into functional shoots and roots. The genetic programs operating in the early embryo organize functional cell patterns rapidly and reproducibly from minimal cell numbers. Understanding their molecular details could therefore greatly expand our ability to generate plant body patterns de novo, with important implications for plant breeding and biotechnology

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore