952 research outputs found

    Arms down cone beam CT hepatic angiography: are we focusing on the wrong target?

    Get PDF
    We read with great interest the recent article by Dr. Gonzalez-Aguirre and colleagues entitled ‘‘Arms Down Cone Beam CT Hepatic Angiography Performance Assessment: Vascular Imaging Quality and Imaging Artefacts’’ [1]. One of the most important advantages of cone beam CT (CBCT) is the possibility to evaluate the lesion’s feeders assisting their identification and catheterization [2]. In this set, the patient’s arms positioning is crucial in order not to impair CBCT imaging. Dr. Gonzalez-Aguirre et al. had elegantly demonstrated that vessels’ visualization is independent from the patient’s arms position, allowing to perform the entire procedure without patient’s movements. This minimizes the risk of contamination and reduces procedural time. However, literature shows that the major pivotal strength of CBCT, either mono-phasic or possibly bi-phasic, is the ability to depict in intra-procedurally ‘‘occult lesions’’, not visible at pre-procedural second-line non-invasive imaging (MRI, MDCT) [3]. This ability is not just for show, but yield to some major clinical implications: the visualization of an occult nodule identifies a subset of population experiencing fast tumour growth, having consequences on the number of adjunctive treatments controlling tumour growth (adjunctive RFA, or TACE procedures) and prioritization for transplantation [4]. Moreover, bi-phasic CBCT, with its unique ability to intra-procedural permit nodule characterization, could help in patients’ reclassification and real-time TACE strategy modification [5]. In this light would be a crucial interest for the audience to know whether the CBCT acquisition with arms down does not alter the diagnostic performance of the modality and ability of lesion’s characterization, especially for those lesion localized peripherally, where the beam hardening artefacts have been shown to be significant. Finally, patient’s positioning is fundamental for CBCT imaging. By acquiring the scan with patient’s arm down, liver volume would not be located within the rotation isocentre. This could be a substantial limitation for lesion located within the left liver lobe, eventually hypertrophied, and for high BMI patients

    Dynamical phase transition of a 1D transport process including death

    Full text link
    Motivated by biological aspects related to fungus growth, we consider the competition of growth and corrosion. We study a modification of the totally asymmetric exclusion process, including the probabilities of injection α\alpha and death of the last particle δ\delta. The system presents a phase transition at δc(α)\delta_c(\alpha), where the average position of the last particle grows as t\sqrt{t}. For δ>δc\delta>\delta_c, a non equilibrium stationary state exists while for δ<δc\delta<\delta_c the asymptotic state presents a low density and max current phases. We discuss the scaling of the density and current profiles for parallel and sequential updates.Comment: 4 pages, 5 figure

    Species Formation in Simple Ecosystems

    Full text link
    In this paper we consider a microscopic model of a simple ecosystem. The basic ingredients of this model are individuals, and both the phenotypic and genotypic levels are taken in account. The model is based on a long range cellular automaton (CA); introducing simple interactions between the individuals, we get some of the complex collective behaviors observed in a real ecosystem. Since our fitness function is smooth, the model does not exhibit the error threshold transition; on the other hand the size of total population is not kept constant, and the mutational meltdown transition is present. We study the effects of competition between genetically similar individuals and how it can lead to species formation. This speciation transition does not depend on the mutation rate. We present also an analytical approximation of the model.Comment: 17 pages with 7 figures, submitted to Int.Journ. Mod. Phys. C. uses World Scientific macros (included) New version improved and correcte

    Spatio-temporal overview of neuroinflammation in an experimental mouse stroke model.

    Get PDF
    After ischemic stroke, in the lesion core as well as in the ischemic penumbra, evolution of tissue damage and repair is strongly affected by neuroinflammatory events that involve activation of local specialized glial cells, release of inflammatory mediators, recruiting of systemic cells and vascular remodelling. To take advantage of this intricate response in the quest to devise new protective therapeutic strategies we need a better understanding of the territorial and temporal interplay between stroke-triggered inflammatory and cell death-inducing processes in both parenchymal and vascular brain cells. Our goal is to describe structural rearrangements and functional modifications occurring in glial and vascular cells early after an acute ischemic stroke. Low and high scale mapping of the glial activation on brain sections of mice subjected to 30 minutes middle cerebral artery occlusion (MCAO) was correlated with that of the neuronal cell death, with markers for microvascular changes and with markers for pro-inflammatory (IL-1β) and reparative (TGFβ1) cytokines. Our results illustrate a time-course of the neuroinflammatory response starting at early time-points (1 h) and up to one week after MCAO injury in mice, with an accurate spatial distribution of the observed phenomena

    Polyethylene Glycol Epirubicin-Loaded Transcatheter Arterial Chemoembolization Procedures Utilizing a Combined Approach with 100 and 200 μm Microspheres: A Promising Alternative to Current Standards

    Get PDF
    PURPOSE:To report clinical effectiveness, toxicity profile, and prognostic factors of combined 100 μm ± 25 and 200 μm ± 50 epirubicin-loaded polyethylene glycol (PEG) microsphere drug-eluting embolic transcatheter arterial chemoembolization protocol in patients with hepatocellular carcinoma. MATERIALS AND METHODS: In this prospective, single-center, single-arm study with 18 months of follow-up, 36 consecutive patients (mean age 69.9 y ± 10.8; 26 men, 10 women; 54 naïve lesions) were treated. Embolization was initiated with 100 μm ± 25 microspheres, and if stasis (10 heart beats) was not achieved, 200 μm ± 50 microspheres were administered. Each syringe (2 mL) of PEG microsphere was loaded with 50 mg of epirubicin. Results were evaluated using Modified Response Evaluation Criteria In Solid Tumors with multidetector computed tomography/magnetic resonance imaging at 1, 3-6, 9-12, and 15-18 months. Toxicity profile was assessed by laboratory testing before and after the procedure. Complications were recorded. Postembolization syndrome (PES) was defined as onset of fever/nausea/pain after the procedure. Patient/lesion characteristics and treatment results were correlated with predicted outcome using regression analysis. Child-Pugh score was A in 86.1% of patients (31/36) and B in 13.9% (5/36). RESULTS: In 10 of 21 lesions, &lt; 2 cm in diameter (47.5%) stasis was achieved with 100 μm ± 25 microspheres only, whereas all other lesions required adjunctive treatment with 200 μm ± 50 microspheres. Reported adverse events were grade 1 acute liver bile duct injury (3/39 cases, 7.7%) and PES (grade 2; 3/39 cases, 7.7%). Complete response (CR) at 1, 3-6, 9-12, and 15-18 months was 61.1%, 65.5%, 63.63%, and 62.5%. Objective response (CR + partial response) at 1, 3-6, 9-12, and 15-18 months was 83.3%, 65.85%, 63.63%, and 62.5%. No single factor (laboratory testing, etiology, patient status, hepatic status, tumor characteristics, administration protocol) predicted outcomes except for albumin level at baseline for CR (P &lt; .05, odds ratio = 1.09). CONCLUSIONS: The combined microsphere sizing strategy was technically feasible and yielded promising results in terms of effectiveness and toxicity
    corecore