82 research outputs found

    Predictive Modeling of Microbial Behavior in Food.

    Get PDF
    Microorganisms can contaminate food, thus causing food spoilage and health risks when the food is consumed. Foods are not sterile; they have a natural flora and a transient flora reflecting their environment. To ensure food is safe, we must destroy these microorganisms or prevent their growth. Recurring hazards due to lapses in the handling, processing, and distribution of foods cannot be solved by obsolete methods and inadequate proposals. They require positive approach and resolution through the pooling of accumulated knowledge. As the industrial domain evolves rapidly and we are faced with pressures to continually improve both products and processes, a considerable competitive advantage can be gained by the introduction of predictive modeling in the food industry. Research and development capital concerns of the industry have been preserved by investigating the plethora of factors able to react on the final product. The presence of microorganisms in foods is critical for the quality of the food. However, microbial behavior is closely related to the properties of food itself such as water activity, pH, storage conditions, temperature, and relative humidity. The effect of these factors together contributing to permitting growth of microorganisms in foods can be predicted by mathematical modeling issued from quantitative studies on microbial populations. The use of predictive models permits us to evaluate shifts in microbial numbers in foods from harvesting to production, thus having a permanent and objective evaluation of the involving parameters. In this vein, predictive microbiology is the study of the microbial behavior in relation to certain environmental conditions, which assure food quality and safety. Microbial responses are evaluated through developed mathematical models, which must be validated for the specific case. As a result, predictive microbiology modeling is a useful tool to be applied for quantitative risk assessment. Herein, we review the predictive models that have been adapted for improvement of the food industry chain through a built virtual prototype of the final product or a process reflecting real-world conditions. It is then expected that predictive models are, nowadays, a useful and valuable tool in research as well as in industrial food conservation processes

    Current Insights in Microbiome Shifts in Sjogren's Syndrome and Possible Therapeutic Interventions.

    Get PDF
    Sjogren's syndrome (SS) is an autoimmune disease, among the most common ones, that targets mainly the exocrine glands as well as extra-glandular epithelial tissues. Their lymphocytic infiltration leads to manifestations from other organs (e.g., kidneys, lungs, liver, or thyroid), apart from sicca symptoms (xerostomia and keratoconjunctivitis). SS is more prevalent in women than in men (9:1). Moreover, p.SS patients are in increased risk to develop lymphoma. Certain autoantibodies (e.g., antibodies against ribonucleoprotein autoantigens Ro-SSA and La-SSB) are ultimate hallmarks for the disease. It was not known until recently that culture-independent techniques like next-generation sequencing (NGS) facilitate the study of the microbe communities in humans and scientists achieved to define the outlines of the microbiome contribution in health and disease. Researchers have started to investigate the alterations in diversity of the oral, ocular, or intestinal microbiota in SS. Recent studies indicate that dysbiosis may play a significant role in SS pathogenesis. At the same time, the cause or effect is not clear yet because the dysfunction of salivary glands induces alterations in oral and intestinal microbiome which is linked to worsen of symptoms and disease severity. If the human microbiome proves to play a key role in pathogenesis and manifestation of SS, the next step could be new and promising therapeutic approaches such as probiotics or prebiotics. This mini review focuses on the alterations of microbiome of SS patients, their connection with immune tolerance and new therapeutic strategies involving diet manipulation toward future personalized medicine

    Unraveling the Interconnection Patterns Across Lung Microbiome, Respiratory Diseases, and COVID-19.

    Get PDF
    Albeit the lungs were thought to be sterile, recent scientific data reported a microbial microbiota in the lungs of healthy individuals. Apparently, new developments in technological approachesincluding genome sequencing methodologies contributed in the identification of the microbiota and shed light on the role of the gut and lung microbiomes in the development of respiratory diseases. Moreover, knowledge of the human microbiome in health may act as a tool for evaluating characteristic shifts in the case of disease. This review paper discusses the development of respiratory disease linked to the intestinal dysbiosis which influences the lung immunity and microbiome. The gastrointestinal-lung dialogue provides interesting aspects in the pathogenesis of the respiratory diseases. Lastly, we were further interested on the role of this interconnection in the progression and physiopathology of newly emergedCOVID-19

    Comparative Susceptibility Study Against Pathogens Using Fermented Cranberry Juice and Antibiotics.

    Get PDF
    In the present study, unfermented and fermented cranberry juice in combination with the Antibiotics vancomycin and tigecycline were tested for their antimicrobial activity. Cranberry juice was fermented with a recently isolated potentially probiotic Lactobacillus paracasei K5. The tested strains selected for this purpose were Enterococcus faecalis, E. faecium, Enterobacter cloacae and Staphylococcus aureus. The methods followed were the determination of zones inhibition, Minimum Inhibitory Concentration (MIC) and Fractional Inhibitory Concentration Index (FICI). Tigecycline together with fermented juice exhibited larger Zones of Inhibition (ZOI) in strains of E. faecium (65 ± 4.8 mm) compared to the respective ZOI with tigecycline and unfermented juice (no zone). The same outcome was also obtained with E. cloacae. Vancomycin together with fermented juice exhibited larger ZOI in strains of E. faecium (28 ± 2.2 mm) compared to the respective ZOI with vancomycin and unfermented juice (24 ± 2.3 mm). The lowest MIC values were recorded when tigecycline was combined with fermented cranberry juice against S. aureus strains, followed by the same combination of juice and antibiotic against E. cloacae strains. FICI revealed synergistic effects between fermented juice and tigecycline against a strain of E. faecium (A2020) and a strain of E. faecalis (A1940). Such effects were also observed in the case of fermented juice in combination with vancomycin against a strain of S. aureus (S18), as well as between fermented juice and tigecycline against E. cloacae (E1005 and E1007) strains. The results indicate that the antibacterial activity of juice fermented with the potentially probiotic L. paracasei K5 may be due to synergistic effects between some end fermentation products and the antibiotic agents examined

    Maintaining Digestive Health in Diabetes: The Role of the Gut Microbiome and the Challenge of Functional Foods.

    Get PDF
    Over the last decades, the incidence of diabetes has increased in developed countries and beyond the genetic impact, environmental factors, which can trigger the activation of the gut immune system, seem to affect the induction of the disease process. Since the composition of the gut microbiome might disturb the normal interaction with the immune system and contribute to altered immune responses, the restoration of normal microbiota composition constitutes a new target for the prevention and treatment of diabetes. Thus, the interaction of gut microbiome and diabetes, focusing on mechanisms connecting gut microbiota with the occurrence of the disorder, is discussed in the present review. Finally, the challenge of functional food diet on maintaining intestinal health and microbial flora diversity and functionality, as a potential tool for the onset inhibition and management of the disease, is highlighted by reporting key animal studies and clinical trials. Early onset of the disease in the oral cavity is an important factor for the incorporation of a functional food diet in daily routine

    Influence of Milk-Feeding Type and Genetic Risk of Developing Coeliac Disease on Intestinal Microbiota of Infants: The PROFICEL Study

    Get PDF
    Interactions between environmental factors and predisposing genes could be involved in the development of coeliac disease (CD). This study has assessed whether milk-feeding type and HLA-genotype influence the intestinal microbiota composition of infants with a family history of CD. The study included 164 healthy newborns, with at least one first-degree relative with CD, classified according to their HLA-DQ genotype by PCR-SSP DQB1 and DQA1 typing. Faecal microbiota was analysed by quantitative PCR at 7 days, and at 1 and 4 months of age. Significant interactions between milk-feeding type and HLA-DQ genotype on bacterial numbers were not detected by applying a linear mixed-model analysis for repeated measures. In the whole population, breast-feeding promoted colonization of C. leptum group, B. longum and B. breve, while formula-feeding promoted that of Bacteroides fragilis group, C. coccoides-E. rectale group, E. coli and B. lactis. Moreover, increased numbers of B. fragilis group and Staphylococcus spp., and reduced numbers of Bifidobacterium spp. and B. longum were detected in infants with increased genetic risk of developing CD. Analyses within subgroups of either breast-fed or formula-fed infants indicated that in both cases increased risk of CD was associated with lower numbers of B. longum and/or Bifidobacterium spp. In addition, in breast-fed infants the increased genetic risk of developing CD was associated with increased C. leptum group numbers, while in formula-fed infants it was associated with increased Staphylococcus and B. fragilis group numbers. Overall, milk-feeding type in conjunction with HLA-DQ genotype play a role in establishing infants' gut microbiota; moreover, breast-feeding reduced the genotype-related differences in microbiota composition, which could partly explain the protective role attributed to breast milk in this disorder

    Branched Chain Fatty Acids Reduce the Incidence of Necrotizing Enterocolitis and Alter Gastrointestinal Microbial Ecology in a Neonatal Rat Model

    Get PDF
    Branched chain fatty acids (BCFA) are found in the normal term human newborn's gut, deposited as major components of vernix caseosa ingested during late fetal life. We tested the hypothesis that premature infants' lack of exposure to gastrointestinal (GI) BCFA is associated with their microbiota and risk for necrotizing enterocolitis (NEC) using a neonatal rat model.Pups were collected one day before scheduled birth. The pups were exposed to asphyxia and cold stress to induce NEC. Pups were assigned to one of three experimental treatments. DF (dam-fed); Control, hand-fed rat milk substitute; BCFA, hand-fed rat milk substitute with 20%w/w BCFA. Total fat was equivalent (11%wt) for both the Control and BCFA groups. Cecal microbiota were characterized by 16S rRNA gene pyrosequencing, and intestinal injury, ileal cytokine and mucin gene expression, interleukin-10 (IL-10) peptide immunohistochemistry, and BCFA uptake in ileum phospholipids, serum and liver were assessed.NEC incidence was reduced by over 50% in the BCFA group compared to the Control group as assessed in ileal tissue; microbiota differed among all groups. BCFA-fed pups harbored greater levels of BCFA-associated Bacillus subtilis and Pseudomonas aeruginosa compared to Controls. Bacillus subtilis levels were five-fold greater in healthy pups compared to pups with NEC. BCFA were selectively incorporated into ileal phospholipids, serum and liver tissue. IL-10 expression increased three-fold in the BCFA group versus Controls and no other inflammatory or mucosal mRNA markers changed.At constant dietary fat level, BCFA reduce NEC incidence and alter microbiota composition. BCFA are also incorporated into pup ileum where they are associated with enhanced IL-10 and may exert other specific effects

    Gut Microbiota Is a Key Modulator of Insulin Resistance in TLR 2 Knockout Mice

    Get PDF
    A genetic and pharmacological approach reveals novel insights into how changes in gut microbiota can subvert genetically predetermined phenotypes from lean to obese

    Milk: a postnatal imprinting system stabilizing FoxP3 expression and regulatory T cell differentiation

    Full text link
    corecore