197 research outputs found

    Energy balance closure for the LITFASS-2003 experiment

    Get PDF
    In the first part, this paper synthesises the main results from a series of previous studies on the closure of the local energy balance at low-vegetation sites during the LITFASS-2003 experiment. A residual of up to 25% of the available energy has been found which cannot be fully explained either by the measurement uncertainty of the single components of the surface energy balance or by the length of the flux-averaging period. In the second part, secondary circulations due to heterogeneities in the surface characteristics (roughness, thermal and moisture properties) are discussed as a possible cause for the observed energy balance non-closure. This hypothesis seems to be supported from the fluxes derived from area-averaging measurement techniques (scintillometers, aircraft)

    On the Discrepancy in Simultaneous Observations of the Structure Parameter of Temperature Using Scintillometers and Unmanned Aircraft

    Get PDF
    We elaborate on the preliminary results presented in Beyrich et al. (in Boundary-Layer Meteorol 144:83–112, 2012), who compared the structure parameter of temperature (C2T) obtained with the unmanned meteorological mini aerial vehicle ( M 2 AV ) versus C2T obtained with two large-aperture scintillometers (LASs) for a limited dataset from one single experiment (LITFASS-2009). They found that C2T obtained from the M 2 AV data is significantly larger than that obtained from the LAS data. We investigate if similar differences can be found for the flights on the other six days during LITFASS-2009 and LITFASS-2010, and whether these differences can be reduced or explained through a more elaborate processing of both the LAS data and the M 2 AV data. This processing includes different corrections and measures to reduce the differences between the spatial and temporal averaging of the datasets. We conclude that the differences reported in Beyrich et al. can be found for other days as well. For the LAS-derived values the additional processing steps that have the largest effect are the saturation correction and the humidity correction. For the M 2 AV -derived values the most important step is the application of the scintillometer path-weighting function. Using the true air speed of the M 2 AV to convert from a temporal to a spatial structure function rather than the ground speed (as in Beyrich et al.) does not change the mean discrepancy, but it does affect C2T values for individual flights. To investigate whether C2T derived from the M 2 AV data depends on the fact that the underlying temperature dataset combines spatial and temporal sampling, we used large-eddy simulation data to analyze C2T from virtual flights with different mean ground speeds. This analysis shows that C2T does only slightly depends on the true air speed when averaged over many flights.DFG/BA1988/9-1DFG/BE2044/3-1DFG/RA617/20-1Dutch Science Foundation/DN76-274DFG/BE2044/3-3DFG/RA617/20-

    Eddy-covariance flux measurements with a weight-shift microlight aircraft

    Get PDF
    The objective of this study is to assess the feasibility and quality of eddy-covariance flux measurements from a weight-shift microlight aircraft (WSMA). Firstly, we investigate the precision of the wind measurement (σ<sub><i>u,v</i></sub> ≤ 0.09 m s<sup>−1</sup>, σ<sub><i>w</i></sub> = 0.04 m s<sup>−1</sup>), the lynchpin of flux calculations from aircraft. From here, the smallest resolvable changes in friction velocity (0.02 m s<sup>−1</sup>), and sensible- (5 W m<sup>−2</sup>) and latent (3 W m<sup>−2</sup>) heat flux are estimated. Secondly, a seven-day flight campaign was performed near Lindenberg (Germany). Here we compare measurements of wind, temperature, humidity and respective fluxes between a tall tower and the WSMA. The maximum likelihood functional relationship (MLFR) between tower and WSMA measurements considers the random error in the data, and shows very good agreement of the scalar averages. The MLFRs for standard deviations (SDs, 2–34%) and fluxes (17–21%) indicate higher estimates of the airborne measurements compared to the tower. Considering the 99.5% confidence intervals, the observed differences are not significant, with exception of the temperature SD. The comparison with a large-aperture scintillometer reveals lower sensible heat flux estimates at both tower (−40 to −25%) and WSMA (−25–0%). We relate the observed differences to (i) inconsistencies in the temperature and wind measurement at the tower and (ii) the measurement platforms' differing abilities to capture contributions from non-propagating eddies. These findings encourage the use of WSMA as a low cost and highly versatile flux measurement platform
    • …
    corecore