Measuring the turbulent wind vector with a weight-shift Microlight Aircraft

S. Metzger (1,3,4), W. Junkermann (1), F. Neidl (1), K. Butterbach-Bahl (1), H.P. Schmid (1), F. Beyrich (2), X.H. Zheng (3), and T. Foken (4)

(1) Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany (stefan.metzger@imk.fzk.de)
(2) German Meteorological Service, Lindenberg, Germany
(3) Chinese Academy of Sciences, Beijing, China
(4) Bayreuth University, Bayreuth, Germany

KIT – the cooperation of Karlsruhe Research Center GmbH and Karlsruhe Technical University (TH)

- M-IFU application area and setup for fast wind measurement
- from lab- to field calibration
- performance and uncertainty
- outlook

- M-IFU application area and setup for fast wind measurement
- from lab- to field calibration
- performance and uncertainty
- outlook

aerosol / cloud and radiation transfer

Karlsruhe Institute of Technology

- what we got...
 - cruise speed 80 kmh⁻¹
 - payload max 80 kg
 - power max 60 A at 12 VDC
 - high mobility

- and what we need...
 - visual flight
 - wind at ground level < 10 ms⁻¹
 - waterproof shelter for storage
 - runway minimum 200 m

KIT – the cooperation of Karlsruhe Research Center GmbH and Karlsruhe Technical University (TH) HELMHOLTZ

setup for fast wind measurement

- 5 hole probe
 - pascaLine low pressure sensors < 6 hPa
- Omega 50 µm Ni-Cr thermocouple
 response time < 0.05 s
- Oxford Scientific RT 3000 INS
 - groundspeed σ < 0.05 ms⁻¹
 - attitude angles $\sigma < 0.1^{\circ}$
- Dynamax OP-2 IRGA for H₂O & CO₂
- 4 pole hardware Butterworth filter at 20 Hz
- storage at 10 Hz; spatial resolution ~ 2.6 m

KIT – the cooperation of Karlsruhe Research Center GmbH and Karlsruhe Technical University (TH)

- M-IFU application area and setup for fast wind measurement
- from lab- to field calibration
- performance and uncertainty
- outlook

calibration scheme

calibration range for flow angles:

- $tan(\beta) = HOR / TAS$
- for TAS = 28 ms⁻¹ and HOR = 10 ms⁻¹ β = ±20°
- low level flight (HOR = 10 ms $^{-1}$, u* = 0.7 ms $^{-1}$) α , β = $\pm 15^{\circ}$

– q port 6° of of half sphere

- fourth order linear model for q
- sensitivity for q: Kq11 = 1.080
- third order linear model for α , β
- uncertainties in residuals
 - $\sigma_{q} < 0.025 \text{ hPa}$
 - $\sigma_{\alpha, \beta} < 0.2^{\circ}$
- outcome
 - q angular independent
 - q recovers input
 - flow angle reference

I & II: lab - dynamic pressure and flow angles

Karlsruhe Institute of Technology

V & VI: field - squares and pitching

- four perpendicular legs
 - cardinal directions
 - calm conditions
- idea
 - q sensitive along-track
 - beta sensitive cross-track

	offset	sensitivity	σ [ms-1]
р	2.12 hPa	-	0.01
q	-	1.09	0.16
α	0.26°	1.09	0.18
β	2.54°	1.21	0.18
Т	-	-	0.02
е	-	-	0.01
UVWairc	-	-	0.05
ANGairc	-	-	0.09
uncorrelated Gauss error			0.32

9 | Stefan Metzger | 9th EMS Toulouse | 30.09.09 |

KIT – the cooperation of Karlsruhe Research Center GmbH and Karlsruhe Technical University (TH) HELMHOLTZ

- M-IFU application area and setup for fast wind measurement
- from lab- to field calibration
- performance and uncertainty
- outlook

free atmosphere: final wind uncertainty

- 20 flights in cardinal directions
- horizontal wind components
 - $-\sigma_{\rm UV} = 0.24 \pm 0.12 \, {\rm ms}^{-1}$
 - $\sigma_{W} = 0.08 \pm 0.05 \text{ ms}^{-1}$

- independent from TAS
- W = 0.02 ± 0.19 ms⁻¹

surface layer: ground truth DWD Lindenberg

- aircraft (o) compared to
 - SODAR (Δ)
 - tower sonic (\Box)
 - tower cup and vain (■)
- vertical wind
 - within 0.2 ms⁻¹
- horizontal wind
 - SODAR and tower sonic ambiguous
 - aircraft well centered

frequency response

6

13 | Stefan Metzger | 9th EMS Toulouse | 30.09.09 |

Karlsruhe Research Center GmbH and Karlsruhe Technical University (TH) HELMHOLTZ ASSOCIATION

overview

- M-IFU application area and setup for fast wind measurement
- from lab- to field calibration
- performance and uncertainty
- outlook

sensible heat: LAS comparison DWD Lindenberg

- propagation of wind measurement uncertainties
 - 4.3% for leg las (4.7 km)
 - 3.9% for leg 2 (20 km))

KIT – the cooperation of Karlsruhe Research Center GmbH and Karlsruhe Technical University (TH) HELMHOLTZ

spatial resolution: landuse change Inner Mongolia

- altitude < 50 m
- 2 km legs, 1 km inhomogeneity
- resolved during stationary condition

KIT – the cooperation of Karlsruhe Research Center GmbH and Karlsruhe Technical University (TH) HELMHOLTZ

Measuring the turbulent wind vector with a weight-shift Microlight Aircraft

S. Metzger (1,3,4), W. Junkermann (1), F. Neidl (1), K. Butterbach-Bahl (1), H.P. Schmid (1), F. Beyrich (2), X.H. Zheng (3), and T. Foken (4)

(1) Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany (stefan.metzger@imk.fzk.de)
(2) German Meteorological Service, Lindenberg, Germany
(3) Chinese Academy of Sciences, Beijing, China
(4) Bayreuth University, Bayreuth, Germany

KIT – the cooperation of Karlsruhe Research Center GmbH and Karlsruhe Technical University (TH)

