6,780 research outputs found

    Galileo early cruise, including Venus, first Earth, and Gaspra encounters

    Get PDF
    This article documents Deep Space Network (DSN) support for the Galileo cruise to Jupiter. The unique trajectory affords multiple encounters during this cruise phase. Each encounter had or will have unique requirements for data acquisition and DSN support configurations. An overview of the cruise and encounters through the asteroid Gaspra encounter is provided

    Medium corrections in the formation of light charged particles in heavy ion reactions

    Get PDF
    Within a microscopic statistical description of heavy ion collisions, we investigate the effect of the medium on the formation of light clusters. The dominant medium effects are self-energy corrections and Pauli blocking that produce the Mott effect for composite particles and enhanced reaction rates in the collision integrals. Microscopic description of composites in the medium follows the Dyson equation approach combined with the cluster mean-field expansion. The resulting effective few-body problem is solved within a properly modified Alt-Grassberger-Sandhas formalism. The results are incorporated in a Boltzmann-Uehling-Uhlenbeck simulation for heavy ion collisions. The number and spectra of light charged particles emerging from a heavy ion collision changes in a significant manner in effect of the medium modification of production and absorption processes.Comment: 16 pages, 6 figure

    Benchmark generator for CEC 2009 competition on dynamic optimization

    Get PDF
    Evolutionary algorithms(EAs) have been widely applied to solve stationary optimization problems. However, many real-world applications are actually dynamic. In order to study the performance of EAs in dynamic environments, one important task is to develop proper dynamic benchmark problems. Over the years, researchers have applied a number of dynamic test problems to compare the performance of EAs in dynamic environments, e.g., the “moving peaks ” benchmark (MPB) proposed by Branke [1], the DF1 generator introduced by Morrison and De Jong [6], the singleand multi-objective dynamic test problem generator by dynamically combining different objective functions of exiting stationary multi-objective benchmark problems suggested by Jin and Sendhoff [2], Yang and Yao’s exclusive-or (XOR) operator [10, 11, 12], Kang’s dynamic traveling salesman problem (DTSP) [3] and dynamic multi knapsack problem (DKP), etc. Though a number of DOP generators exist in the literature, there is no unified approach of constructing dynamic problems across the binary space, real space and combinatorial space so far. This report uses the generalized dynamic benchmark generator (GDBG) proposed in [4], which construct dynamic environments for all the three solution spaces. Especially, in the rea

    Electron acceleration in a JET disruption simulation

    Full text link
    Runaways are suprathermal electrons having sufficiently high energy to be continuously accelerated up to tens of MeV by a driving electric field [1]. Highly energetic runaway electron (RE) beams capable of damaging the tokamak first wall can be observed after a plasma disruption [2]. Therefore, it is of primary importance to fully understand their generation mechanisms in order to design mitigation systems able to guarantee safe tokamak operations. In a previous work, [3], a test particle tracker was introduced in the JOREK 3D non-linear MHD code and used for studying the electron confinement during a simulated JET-like disruption. It was found in [3] that relativistic electrons are not completely deconfined by the stochastic magnetic field taking place during the disruption thermal quench (TQ). This is due to the reformation of closed magnetic surfaces at the beginning of the current quench (CQ). This result was obtained neglecting the inductive electric field in order to avoid the unrealistic particle acceleration which otherwise would have happened due to the absence of collision effects. The present paper extends [3] analysing test electron dynamics in the same simulated JET-like disruption using the complete electric field. For doing so, a simplified collision model is introduced in the particle tracker guiding center equations. We show that electrons at thermal energies can become RE during or promptly after the TQ due to a combination of three phenomena: a first REs acceleration during the TQ due to the presence of a complex MHD-induced electric field, particle reconfinement caused by the fast reformation of closed magnetic surfaces after the TQ and a secondary acceleration induced by the CQ electric field

    Characterization of estrogenicity of phytoestrogens in an endometrial-derived experimental model.

    Get PDF
    Severe developmental and reproductive disorders in wild animals have been linked to high exposure to persistent environmental chemicals with hormonal activity. These adverse effects of environmental estrogens have raised considerable concern and have received increasing attention. Although numerous chemicals with the capacity to interfere with the estrogen receptor (ER) have been identified, information on their molecular mechanism of action and their relative potency is rather limited. For the endometrium, the lack of information is due to the lack of a suitable experimental model. We investigated the functions of phytoestrogens in an endometrial-derived model, RUCA-I rat endometrial adenocarcinoma cells. The cells were cultured on a reconstituted basement membrane to preserve their functional differentiation and estrogen responsiveness. We assessed the relative binding affinity to the estrogen receptor of the selected phytoestrogens coumestrol, genistein, daidzein, and the putative phytoestrogen mangostin compared to estradiol by a competitive Scatchard analysis. The following affinity ranking was measured: 17beta-estradiol >>> coumestrol > genistein > daidzein >>> mangostin. In addition, we investigated the capacity of these compounds to promote the increased production of complement C3, a well-known estradiol-regulated protein of the rat endometrium. All substances tested increased the production of complement C3, although different concentrations were necessary to achieve equivalent levels of induction compared to estradiol. Mechanistically we were able to demonstrate that the increase of complement C3 production was mediated by primarily increasing its steady-state mRNA level. These findings indicate that RUCA-I cells represent a sensitive model system to elucidate relative potencies and functions of environmental estrogens in an endometrium-derived model

    Dissociation energy of the hydrogen molecule at 109^{-9} accuracy

    Get PDF
    The ionization energy of ortho-H2_2 has been determined to be EIo(H2)/(hc)=124357.238062(25)E^\mathrm{o}_\mathrm{I}(\mathrm{H}_2)/(hc)=124\,357.238\,062(25) cm1^{-1} from measurements of the GK(1,1)--X(0,1) interval by Doppler-free two-photon spectroscopy using a narrow band 179-nm laser source and the ionization energy of the GK(1,1) state by continuous-wave near-infrared laser spectroscopy. EIoE^\mathrm{o}_\mathrm{I}(H2_2) was used to derive the dissociation energy of H2_2, D0N=1D^{N=1}_{0}(H2_2), at 35999.582894(25)35\,999.582\,894(25) cm1^{-1} with a precision that is more than one order of magnitude better than all previous results. The new result challenges calculations of this quantity and represents a benchmark value for future relativistic and QED calculations of molecular energies.Comment: 6 pages, 5 figure

    Parameter-Independent Strategies for pMDPs via POMDPs

    Full text link
    Markov Decision Processes (MDPs) are a popular class of models suitable for solving control decision problems in probabilistic reactive systems. We consider parametric MDPs (pMDPs) that include parameters in some of the transition probabilities to account for stochastic uncertainties of the environment such as noise or input disturbances. We study pMDPs with reachability objectives where the parameter values are unknown and impossible to measure directly during execution, but there is a probability distribution known over the parameter values. We study for the first time computing parameter-independent strategies that are expectation optimal, i.e., optimize the expected reachability probability under the probability distribution over the parameters. We present an encoding of our problem to partially observable MDPs (POMDPs), i.e., a reduction of our problem to computing optimal strategies in POMDPs. We evaluate our method experimentally on several benchmarks: a motivating (repeated) learner model; a series of benchmarks of varying configurations of a robot moving on a grid; and a consensus protocol.Comment: Extended version of a QEST 2018 pape

    Scaling Bounded Model Checking By Transforming Programs With Arrays

    Full text link
    Bounded Model Checking is one the most successful techniques for finding bugs in program. However, model checkers are resource hungry and are often unable to verify programs with loops iterating over large arrays.We present a transformation that enables bounded model checkers to verify a certain class of array properties. Our technique transforms an array-manipulating (ANSI-C) program to an array-free and loop-free (ANSI-C) program thereby reducing the resource requirements of a model checker significantly. Model checking of the transformed program using an off-the-shelf bounded model checker simulates the loop iterations efficiently. Thus, our transformed program is a sound abstraction of the original program and is also precise in a large number of cases - we formally characterize the class of programs for which it is guaranteed to be precise. We demonstrate the applicability and usefulness of our technique on both industry code as well as academic benchmarks
    corecore