12 research outputs found

    Maspin differential expression patterns as a potential marker for targeted screening of esophageal adenocarcinoma/gastroesophageal junction adenocarcinoma.

    Get PDF
    Barrett's esophagus (BE) is a predisposing factor of esophageal adenocarcinoma/gastroesophageal junction adenocarcinoma (ECA/GEJ Aca). BE patients are stratified and subsequently monitored according to the risk of malignant progression by the combination of endoscopy and biopsy. This study is to evaluate the maspin expression patterns as early diagnostic markers of malignancy in BE patients. Immunohistochemistry (IHC) staining was performed on 62 archival core biopsies from 35 patients, including BE without dysplasia (intestinal metaplasia, IM), BE with low grade dysplasia, BE with high grade dysplasia, carcinoma in situ, and well to poorly differentiated ECA/GEJ Aca (PD-ECA/GEJ Aca). The intensity and the subcellular distribution of immunoreactivity were evaluated microscopically. Statistical analysis was performed using the χ2 and Fisher exact tests. The level of epithelial-specific tumor suppressor maspin protein inversely correlated with the progression from IM to PD-ECA/GEJ Aca. Lesions of each pathological grade could be divided into subtypes that exhibited distinct maspin subcellular distribution patterns, including nuclear only (Nuc), combined nuclear and cytoplasmic (Nuc+Cyt), cytoplasmic only (Cyt) and overall negligible (Neg). The Cyt subtype, which was minor in both IM and dysplasia (approximately 10%), was predominant in ECA/GEJ Aca as early as well-differentiated lesions (more than 50%: p = 0.0092). In comparison, nuclear staining of the tumor suppressor TP53 was heterogeneous in dysplasia, and did not correlate with the differentiation grades of ECA/GEJ Aca. The Cyt subtype of maspin expression pattern in core biopsies of BE patients may serve as a molecular marker for early diagnosis of ECA/GEJ Aca.This work was supported by the NIH grant P30CA022453 (to the Karmanos Cancer Institute with Sheng, S. as a program leader), the Ruth Sager Memorial Fund (to Sheng, S.), the Karmanos Cancer Institute Pilot Project Grant 25S5Z (to Sheng, S.), and the Karmanos Cancer Institute Prostate Cancer Research Pilot Project Grant (to Sheng, S.)

    Myoepithelial carcinoma of the posterior mediastinum: An uncommon site for a rare tumor

    No full text
    Myoepithelial carcinoma (MC) is a rare tumor that arises from myoepithelial cells; most commonly in the salivary glands, but other infrequent body sites such as the breast, lung, lower limb, upper limb, head and neck, vulva, and vagina can be involved. We report the first case of myoepithelial carcinoma arising in the posterior mediastinum of a 51 year-old male who presented with a mediastinal mass and subsequently underwent tumor debulking surgery. Grossly, the specimen consisted of multiple tan–gray firm fragments of tissue with an overall measurement of 7.0 cm in greatest dimension. Histologic examination revealed an ill-defined, infiltrative lesion with a biphasic cell population. The tumor cells were diffusely positive for epithelial and myoepithelial markers, confirming the above diagnosis. Recognition of this entity at an uncommon site may present a diagnostic challenge due to its morphologic heterogeneity and the differential diagnosis includes benign and malignant tumors, which could lead to over or under-treatment, respectively

    Integrative deep learning analysis improves colon adenocarcinoma patient stratification at risk for mortalityResearch in context

    Get PDF
    Summary: Background: Colorectal cancers are the fourth most diagnosed cancer and the second leading cancer in number of deaths. Many clinical variables, pathological features, and genomic signatures are associated with patient risk, but reliable patient stratification in the clinic remains a challenging task. Here we assess how image, clinical, and genomic features can be combined to predict risk. Methods: We developed and evaluated integrative deep learning models combining formalin-fixed, paraffin-embedded (FFPE) whole slide images (WSIs), clinical variables, and mutation signatures to stratify colon adenocarcinoma (COAD) patients based on their risk of mortality. Our models were trained using a dataset of 108 patients from The Cancer Genome Atlas (TCGA), and were externally validated on newly generated dataset from Wayne State University (WSU) of 123 COAD patients and rectal adenocarcinoma (READ) patients in TCGA (N = 52). Findings: We first observe that deep learning models trained on FFPE WSIs of TCGA-COAD separate high-risk (OS  5 years, N = 25) patients (AUC = 0.81 ± 0.08, 5 year survival p < 0.0001, 5 year relative risk = 1.83 ± 0.04) though such models are less effective at predicting overall survival (OS) for moderate-risk (3 years < OS < 5 years, N = 45) patients (5 year survival p-value = 0.5, 5 year relative risk = 1.05 ± 0.09). We find that our integrative models combining WSIs, clinical variables, and mutation signatures can improve patient stratification for moderate-risk patients (5 year survival p < 0.0001, 5 year relative risk = 1.87 ± 0.07). Our integrative model combining image and clinical variables is also effective on an independent pathology dataset (WSU-COAD, N = 123) generated by our team (5 year survival p < 0.0001, 5 year relative risk = 1.52 ± 0.08), and the TCGA-READ data (5 year survival p < 0.0001, 5 year relative risk = 1.18 ± 0.17). Our multicenter integrative image and clinical model trained on combined TCGA-COAD and WSU-COAD is effective in predicting risk on TCGA-READ (5 year survival p < 0.0001, 5 year relative risk = 1.82 ± 0.13) data. Pathologist review of image-based heatmaps suggests that nuclear size pleomorphism, intense cellularity, and abnormal structures are associated with high-risk, while low-risk regions have more regular and small cells. Quantitative analysis shows high cellularity, high ratios of tumor cells, large tumor nuclei, and low immune infiltration are indicators of high-risk tiles. Interpretation: The improved stratification of colorectal cancer patients from our computational methods can be beneficial for treatment plans and enrollment of patients in clinical trials. Funding: This study was supported by the National Cancer Institutes (Grant No. R01CA230031 and P30CA034196). The funders had no roles in study design, data collection and analysis or preparation of the manuscript

    Improvement of steatotic rat liver function with a defatting cocktail during ex situ normothermic machine perfusion is not directly related to liver fat content.

    No full text
    There is a significant organ shortage in the field of liver transplantation, partly due to a high discard rate of steatotic livers from donors. These organs are known to function poorly if transplanted but make up a significant portion of the available pool of donated livers. This study demonstrates the ability to improve the function of steatotic rat livers using a combination of ex situ machine perfusion and a "defatting" drug cocktail. After 6 hours of perfusion, defatted livers demonstrated lower perfusate lactate levels and improved bile quality as demonstrated by higher bile bicarbonate and lower bile lactate. Furthermore, defatting was associated with decreased gene expression of pro-inflammatory cytokines and increased expression of enzymes involved in mitochondrial fatty acid oxidation. Rehabilitation of marginal or discarded steatotic livers using machine perfusion and tailored drug therapy can significantly increase the supply of donor livers for transplantation

    Targeting Nuclear Exporter Protein XPO1/CRM1 in Gastric Cancer

    No full text
    Gastric cancer remains an unmet clinical problem in urgent need of newer and effective treatments. Here we show that the nuclear export protein, Exportin 1 (XPO1, chromosome region maintenance 1 or CRM1), is a promising molecular target in gastric cancer. We demonstrate significant overexpression of XPO1 in a cohort of histologically diverse gastric cancer patients with primary and metastatic disease. XPO1 RNA interference suppressed gastric cancer cell growth. Anti-tumor activity was observed with specific inhibitor of nuclear export (SINE) compounds (selinexor/XPOVIO), second-generation compound KPT-8602/eltanexor, KPT-185 and +ve control Leptomycin B in three distinct gastric cancer cell lines. SINE compounds inhibited gastric cancer cell proliferation, disrupted spheroid formation, induced apoptosis and halted cell cycle progression at the G1/S phase. Anti-tumor activity was concurrent with nuclear retention of tumor suppressor proteins and inhibition of colony formation. In combination studies, SINE compounds enhanced the efficacy of nab-paclitaxel in vitro and in vivo. More significantly, using non-coding RNA sequencing studies, we demonstrate for the first time that SINE compounds can alter the expression of non-coding RNAs (microRNAs and piwiRNAs). SINE treatment caused statistically significant downregulation of oncogenic miR-33b-3p in two distinct cell lines. These studies demonstrate the therapeutic significance of XPO1 in gastric cancer that warrants further clinical investigation

    Inhibitor of the Nuclear Transport Protein XPO1 Enhances the Anticancer Efficacy of KRAS G12C Inhibitors in Preclinical Models of KRAS G12C-Mutant Cancers.

    No full text
    UNLABELLED: The identification of molecules that can bind covalently to KRAS G12C and lock it in an inactive GDP-bound conformation has opened the door to targeting KRAS G12C selectively. These agents have shown promise in preclinical tumor models and clinical trials. FDA has recently granted approval to sotorasib for KRAS G12C mutated non-small cell lung cancer (NSCLC). However, patients receiving these agents as monotherapy generally develop drug resistance over time. This necessitates the development of multi-targeted approaches that can potentially sensitize tumors to KRAS inhibitors. We generated KRAS G12C inhibitor-resistant cell lines and observed that they exhibit sensitivity toward selinexor, a selective inhibitor of nuclear export protein exportin1 (XPO1), as a single agent. KRAS G12C inhibitors in combination with selinexor suppressed the proliferation of KRAS G12C mutant cancer cell lines in a synergistic manner. Moreover, combined treatment of selinexor with KRAS G12C inhibitors resulted in enhanced spheroid disintegration, reduction in the number and size of colonies formed by G12C mutant cancer cells. Mechanistically, the combination of selinexor with KRAS G12C inhibitors suppressed cell growth signaling and downregulated the expression of cell cycle markers, KRAS and NF-kB as well as increased nuclear accumulation of tumor suppressor protein Rb. In an in vivo KRAS G12C cell-derived xenograft model, oral administration of a combination of selinexor and sotorasib was demonstrated to reduce tumor burden and enhance survival. In conclusion, we have shown that the nuclear transport protein XPO1 inhibitor can enhance the anticancer activity of KRAS G12C inhibitors in preclinical cancer models. SIGNIFICANCE: In this study, combining nuclear transport inhibitor selinexor with KRAS G12C inhibitors has resulted in potent antitumor effects in preclinical cancer models. This can be an effective combination therapy for cancer patients that do not respond or develop resistance to KRAS G12C inhibitor treatment

    PAK4-NAMPT Dual Inhibition as a Novel Strategy for Therapy Resistant Pancreatic Neuroendocrine Tumors

    No full text
    Pancreatic neuroendocrine tumors (PNET) remain an unmet clinical need. In this study, we show that targeting both nicotinamide phosphoribosyltransferase (NAMPT) and p21-activated kinase 4 (PAK4) could become a synthetic lethal strategy for PNET. The expression of PAK4 and NAMPT was found to be higher in PNET tissue compared to normal cells. PAK4-NAMPT dual RNAi suppressed proliferation of PNET cell lines. Treatment with KPT-9274 (currently in a Phase I trial or analogs, PF3758309 (the PAK4 selective inhibitor) or FK866 (the NAMPT inhibitor)) suppressed the growth of PNET cell lines and synergized with the mammalian target of rapamycin (mTOR) inhibitors everolimus and INK-128. Molecular analysis of the combination treatment showed down-regulation of known everolimus resistance drivers. KPT-9274 suppressed NAD pool and ATP levels in PNET cell lines. Metabolomic profiling showed a statistically significant alteration in cellular energetic pathways. KPT-9274 given orally at 150 mg/kg 5 days/week for 4 weeks dramatically reduced PNET sub-cutaneous tumor growth. Residual tumor analysis demonstrated target engagement in vivo and recapitulated in vitro results. Our investigations demonstrate that PAK4 and NAMPT are two viable therapeutic targets in the difficult to treat PNET that warrant further clinical investigation
    corecore