7 research outputs found

    Dirichlet Process Gaussian Mixture Models for Real-Time Monitoring and Their Application to Chemical Mechanical Planarization

    Get PDF
    The goal of this work is to use sensor data for online detection and identification of process anomalies (faults). In pursuit of this goal, we propose Dirichlet process Gaussian mixture (DPGM) models. The proposed DPGM models have two novel outcomes: 1) DP-based statistical process control (SPC) chart for anomaly detection and 2) unsupervised recurrent hierarchical DP clustering model for identification of specific process anomalies. The presented DPGM models are validated using numerical simulation studies as well as wireless vibration signals acquired from an experimental semiconductor chemical mechanical planarization (CMP) test bed. Through these numerically simulated and experimental sensor data, we test the hypotheses that DPGM models have significantly lower detection delays compared with SPC charts in terms of the average run length (ARL1) and higher defect identification accuracies (F-score) than popular clustering techniques, such as mean shift. For instance, the DP-based SPC chart detects pad wear anomaly in CMP within 50 ms, as opposed to over 140 ms with conventional control charts. Likewise, DPGM models are able to classify different anomalies in CMP

    Quantification of Ultraprecision Surface Morphology using an Algebraic Graph Theoretic Approach

    Get PDF
    Assessment of progressive, nano-scale variation of surface morphology during ultraprecision manufacturing processes, such as fine-abrasive polishing of semiconductor wafers, is a challenging proposition owing to limitations with traditional surface quantifiers. We present an algebraic graph theoretic approach that uses graph topological invariants for quantification of ultraprecision surface morphology. The graph theoretic approach captures heterogeneous multi-scaled aspects of surface morphology from optical micrographs, and is therefore valuable for in situ real-time assessment of surface quality. Extensive experimental investigations with specular finished (Sa ~ 5 nm) blanket copper wafers from a chemical mechanical planarization (CMP) process suggest that the proposed method was able to quantify and track variations in surface morphology more effectively than statistical quantifiers reported in literature

    Dirichlet Process Gaussian Mixture Models for Real-Time Monitoring and Their Application to Chemical Mechanical Planarization

    Get PDF
    The goal of this work is to use sensor data for online detection and identification of process anomalies (faults). In pursuit of this goal, we propose Dirichlet process Gaussian mixture (DPGM) models. The proposed DPGM models have two novel outcomes: 1) DP-based statistical process control (SPC) chart for anomaly detection and 2) unsupervised recurrent hierarchical DP clustering model for identification of specific process anomalies. The presented DPGM models are validated using numerical simulation studies as well as wireless vibration signals acquired from an experimental semiconductor chemical mechanical planarization (CMP) test bed. Through these numerically simulated and experimental sensor data, we test the hypotheses that DPGM models have significantly lower detection delays compared with SPC charts in terms of the average run length (ARL1) and higher defect identification accuracies (F-score) than popular clustering techniques, such as mean shift. For instance, the DP-based SPC chart detects pad wear anomaly in CMP within 50 ms, as opposed to over 140 ms with conventional control charts. Likewise, DPGM models are able to classify different anomalies in CMP

    Energy-Efficient Bi-Objective Optimization Based on the Moth–Flame Algorithm for Cluster Head Selection in a Wireless Sensor Network

    No full text
    Designing an efficient wireless sensor network (WSN) system is considered a challenging problem due to the limited energy supply per sensor node. In this paper, the performance of several bi-objective optimization algorithms in providing energy-efficient clustering solutions that can extend the lifetime of sensor nodes were investigated. Specifically, we considered the use of the Moth–Flame Optimization (MFO) algorithm and the Salp Swarm Algorithm (SSA), as well as the Whale Optimization Algorithm (WOA), in providing efficient cluster-head selection decisions. Compared to a reference scheme using the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol, the simulation results showed that integrating the MFO, SSA or WOA algorithms into WSN clustering protocols could significantly extend the WSN lifetime, which improved the nodes’ residual energy, the number of alive nodes, the fitness function and the network throughput. The results also revealed that the MFO algorithm outperformed the other algorithms in terms of energy efficiency
    corecore