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Dirichlet Process Gaussian Mixture Models for
Real-Time Monitoring and Their Application

to Chemical Mechanical Planarization
Jia (Peter) Liu, Omer F. Beyca, Prahalad K. Rao, Zhenyu (James) Kong, Member, IEEE,

and Satish T. S. Bukkapatnam

Abstract— The goal of this work is to use sensor data for
online detection and identification of process anomalies (faults).
In pursuit of this goal, we propose Dirichlet process Gaussian
mixture (DPGM) models. The proposed DPGM models have two
novel outcomes: 1) DP-based statistical process control (SPC)
chart for anomaly detection and 2) unsupervised recurrent
hierarchical DP clustering model for identification of specific
process anomalies. The presented DPGM models are validated
using numerical simulation studies as well as wireless vibration
signals acquired from an experimental semiconductor chemi-
cal mechanical planarization (CMP) test bed. Through these
numerically simulated and experimental sensor data, we test the
hypotheses that DPGM models have significantly lower detection
delays compared with SPC charts in terms of the average
run length (ARL1) and higher defect identification accuracies
(F-score) than popular clustering techniques, such as mean
shift. For instance, the DP-based SPC chart detects pad wear
anomaly in CMP within 50 ms, as opposed to over 140 ms with
conventional control charts. Likewise, DPGM models are able to
classify different anomalies in CMP.

Note to Practitioners—This paper forwards novel Dirichlet
process Gaussian mixture (DPGM) models for online process
quality monitoring. The practical outcome is that the delete-
rious impact of process drifts on product quality is identified
in their early stages using the presented DPGM models. For
instance, sensor signal patterns from contemporary advanced
manufacturing processes rarely follow distribution symmetry or
normality assumptions endemic to traditional statistical process
control (SPC) methods. These assumptions limit the effectiveness
of traditional SPC methods for detection of process anomalies
from complex heterogeneous sensor data. In comparison, the
proposed DP-based SPC is capable of detecting process changes
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in the sensor data notwithstanding the characteristics of the
underlying distributions. Moreover, we show that the recurrent
hierarchical DP clustering model identifies process anomalies
with higher fidelity compared with traditional methods, such as
mean shift clustering.

Index Terms— Chemical mechanical planarization (CMP),
Dirichlet process (DP), DP Gaussian mixture (DPGM) models,
fault detection, online process monitoring, recurrent hierarchical
DP (RHDP) clustering.

I. INTRODUCTION

A. Motivation

THIS paper addresses two research questions from the
perspective of sensor-based online process monitoring.

1) How to detect the onset of anomalous process states.
2) How to identify/classify different types of anomalous

process states.
The first falls under the category of anomaly (fault) detec-

tion; the second under the purview of anomaly (fault) diag-
nosis. These questions are resolved using Dirichlet process
Gaussian mixture (DPGM) models. The utility of the proposed
DPGM models are demonstrated in the context of process
monitoring in chemical mechanical planarization (CMP) using
in situ wireless vibration sensor signals [1].

This research is valuable for mitigating process anomalies
in the manufacture of ultraprecision high-value components.
For instance, CMP-related defects, e.g., dishing and erosion,
are attributed to be among the prominent reasons inhibiting
semiconductor device yield rates [2], [3]. Therefore, there is
a burgeoning need for in situ sensor-based quality monitoring
approaches in ultraprecision manufacturing processes, such as
CMP, so that incipient process anomalies can be identified and
corrected at an earlier stage [1].

B. Challenges
Monitoring of complex manufacturing processes, e.g., CMP

from sensors signals, is challenging due to the inherent non-
linear and non-Gaussian dynamics [4]. The complex process
dynamics manifest prominently in the acquired sensor signals.
For instance, Fig. 1 shows a representative wireless micro-
electro-mechanical systems (MEMS) vibration sensor signal
obtained from the experimental CMP test bed used in this
paper (see Section IV). The signal time series in Fig. 1
has aspects that are evocative of nonlinear quasi-periodic
dynamics, as revealed in [1].

Traditional statistical process control (SPC) charts and clus-
tering techniques [e.g., mean shift, k-means, and expectation
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Fig. 1. Characteristics of a typical experimental CMP wireless vibration
sensor signal sampled at ∼670 Hz (see Section IV). (a) Temporal signal
with prominent cycles occurring at 1 s intervals and intermittent spikes.
(b) State space plot of the signal data at three consecutive time instances
(X (t), X (t +1), and X (t +2)) depicts quasi-periodic dynamics. (c) Histogram
of vibration signal data reveals that the distribution is asymmetric and has
bimodal tendency.

maximization (EM)] are ill suited for monitoring of such
complex dynamics (e.g., Fig. 1) due to the following reasons.

• Parametric SPC charts have limited applicability to data
with the following salient characteristics: the underlying
distribution is non-Gaussian or multimodal, with persis-
tent autocorrelation, or marked periodicity [5].

• Most distribution-free (nonparametric) SPC charts for
non-Gaussian data are based on data ranking and con-
strained by the symmetry assumption of data distribu-
tion [6].

• Control charts cannot identify/localize the different
process anomalies [7].

• Classical clustering techniques, for instance, mean shift,
require sufficient high data density with clear gradients to
locate the cluster centers, and k-means and EM methods
require a priori assumptions regarding the number of
clusters in the data [8]–[10].

C. Contributions and Novelty
We seek to overcome the aforementioned shortcomings in

traditional SPC and clustering techniques using DPGM models
for signal analysis [11]. DPGM models surmount limitations,
such as normality and symmetry of data inherent in SPC
charts. Furthermore, DPGM models inherently account for
temporal autocorrelation in the data. Accordingly, the main
contributions from DPGM models presented in this paper are
as follows:

1) an SPC chart using DP mixture model for detection of
anomalies;

2) unsupervised clustering of process states based on
recurrent hierarchical DP (RHDP) clustering model,
which is used for identifying/classifying specific process
anomalies.

The rest of this paper is structured as follows. A review
of the pertinent literature is presented in Section II. The
methodology of DPGM models is detailed in Section III,
which includes delineation of constitutive equations for
DP-based SPC and RHDP clustering and further corroboration

with numerical studies. DPGM models are applied to experi-
mentally acquired vibration signals from the CMP process in
Section IV; and conclusions and avenues for further research
are summarized in Section V.

II. REVIEW OF RELATED RESEARCH

The review of the relevant literature is conducted in the
following two parts:

1) Recent developments in SPC.
2) Research in techniques such as neural networks (NNs),

wavelet analysis, and Gaussian mixture models as
enhancements to traditional SPC.

A. Statistical Process Control for Process Monitoring
Traditional parametric SPC charts, such as Shewhart X-bar

and R, cumulative sum (CUSUM), and exponentially weighted
moving average (EWMA), have been widely used in various
scenarios ranging from manufacturing to service industries for
process improvement [7]. Despite the underlying normality
and independence assumptions, the effectiveness of Shewhart
control charts have been attested; they are particularly useful
for situations where subgrouped measurements can be made
and the process shifts are significant (>1 standard deviation)
[7]. CUSUM and EWMA control charts can be applied to both
subgrouped and individual measurements, and are particularly
suited for detecting small drifts. However, the latter (EWMA)
are not directionally invariant, i.e., the control chart has a
certain inertia effect in reacting to process drifts [7].

To overcome these restrictive assumptions with traditional
parametric control charts, researchers devised nonparametric
SPC charts, which are also called distribution-free SPC charts.
Chakraborti et al. [12] provided a comprehensive review of
nonparametric SPC charts. Although a specific type of dis-
tribution does not restrain nonparametric charts, nonetheless,
most are based on data ranking methods, which entail that the
data are implicitly assumed to be symmetric about the median.

To overcome this drawback, Qiu and Li [13] proposed a
categorization-based nonparametric SPC chart for univariate
data sequences. Their method relaxes the data symmetry
assumption and is shown to be effective for non-Gaussian
data. However, relying on a priori categorization of data for
analysis results in information loss. Particularly, the selection
of the number of groups for categorization, which is a heuristic
parameter, is critical to the performance of control chart.

In the work of Qiu and Li [14], they devised nonparametric
SPC charts leveraging Gaussian transformations, i.e., trans-
forming data belonging to an unknown distribution to approx-
imately Gaussian. However, the normality of transformed data
cannot be universally guaranteed for cases where the data
are patently multimodal and complex, such as in the CMP
vibration signals used in this work.

To overcome these challenges, researchers have explored
wavelet and NN-based SPC. These techniques can accommo-
date complex process dynamics, and have also been applied
in CMP process [15].

B. Wavelet and Neural Network-Based Monitoring
Wavelet analysis has been successfully implemented in the

modeling and monitoring of functional data in advanced man-
ufacturing [16]. For instance, Ganesan et al. [17] developed
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the wavelet-based SPC approach for real-time identification of
delamination defects in CMP process.

Guo et al. [5] presented an approach that uses wavelet
coefficients in an SPC setting for detecting process drifts. Their
method involves multiscale decomposition of a signal using a
predetermined Harr wavelet basis function. Subsequently, they
tracked the wavelet coefficients at a predetermined optimal
(wavelet) level using CUSUM and EWMA control charts.
Jeong et al. [18] described a similar wavelet SPC procedure
using the Symlet-8 wavelet basis function for functional data
analysis of radio antenna reception patterns. Their approach
uses a customized control chart with control limits derived
from a statistic resembling multivariate Hotelling’s T2 [7].

Pugh [19] showed that feedforward NNs have signifi-
cantly lower types I and II errors compared with traditional
Shewhart X-bar and R charts and therefore could be
valuable for process monitoring applications. Subsequently,
Zorriassatine and Tannock [20] have developed methods that
employ NNs for process monitoring applications. As an exam-
ple of NN-based process monitoring, Rao et al. [21], [22]
integrated a feedback delay embedded recurrent NN (RNN)
with Bayesian particle filtering (PF) for real-time detection
of mean shift in ultraprecision diamond turning process. The
evolving surface morphology of diamond-turned workpieces
is predicted in real time from in situ heterogeneous sensor
data using PF-updated RNN weights. The network weights
are subsequently monitored in an SPC setting using mean shift
clustering [23].

Although these wavelet and NN-based SPC methods are
applicable to complex signals without being constrained by
the underlying assumptions of data distribution, they are
nonetheless computationally demanding and engender a large
number of variables that have to be tracked simultaneously.
Moreover, these approaches require a predetermined model
or basis function, such as the structure of the NN, and
the basis and scaling function for wavelet decomposition.
Therefore, decision uncertainty due to model selection remains
a contentious challenge.

In contrast, SPC methods with Gaussian mixture
modeling (GMM) overcome these aforementioned data
distribution and model selection limitations. In this
context, Choi et al. [24] and Thissen et al. [25] proposed
PCA-based monitoring techniques, where GMM-derived
models constructed via EM algorithms are used to approximate
the data pattern. Similarly, Chen et al. [26] utilized infinite
Gaussian mixture models to construct the control chart.

The DPGM models presented in this paper extend
GMM-based SPC techniques toward both process anomaly
detection and identification. It is noted that DP mixture models
are the basis for constructing DPGM models. DP mixture
modeling has been previously applied to data in several areas,
such as medical images and online documents [27], [28].
DP mixture models approximate an empirical (arbitrary) data
distribution via a mixture of finite Gaussian distributions with-
out a priori knowledge of the number of mixture components.
For instance, Rao et al. [29] applied DP mixture model to
identify process anomalies in fused filament fabrication—an
additive manufacturing process.

Fig. 2. Overall methodology of DPGM modeling for online monitoring.

III. RESEARCH METHODOLOGY AND VERIFICATION

WITH NUMERICAL SIMULATIONS

In this paper, we first propose DP-based SPC for detecting
process anomalies. Then, toward identifying different types of
process anomalies from a continuous sensor data stream, two
extensions to DP models are forwarded to accommodate the
following aims:

1) Estimating distribution characteristics within a con-
tiguous time epoch, given the autocorrelation in the
data.

2) Tracking the evolution of the data distribution between
time epochs.

The first aim is realized using the recurrent DP (RDP)
method proposed in [30]. The second involves using the
hierarchical DP (HDP) developed in [31]. The integration
of these two entities is accomplished in this paper, and is
termed RHDP. Specifically, the RDP and HDP parts resolve
the following questions.

• RDP: What are the characteristics of the data distrib-
ution at the current time epoch, given the knowledge
of the distribution characteristics at the previous time
epochs?

• HDP: What category is the process state (anomaly/fault)
at the current time epoch, given the distribution charac-
teristics estimated using RDP?

In other words, RDP determines the characteristics of data
distribution at the current time epoch by including information
from previous time epochs, while HDP enables data to be
classified by allowing distributions falling under the same DP
model to be clustered together. The overall framework of the
proposed methodology is summarized in Fig. 2.

First, the DP mixture model is introduced, which approxi-
mates an empirical data distribution as a mixture of Gaussian
component and develops DP-based SPC (Section III-A). Next,
the novel RHDP model is elucidated for clustering process
states and identifying process anomalies (Section III-B).

A. Dirichlet-Process-Based SPC for Monitoring
Complex Non-Gaussian Waveforms

For time series data with complex nonlinear dynamics,
such as the vibration sensor data acquired from the CMP
process (Fig. 1), the data distribution may not be Gaussian.
This poses a significant challenge for process modeling and
monitoring with traditional methods based on the presumption
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of normality and symmetry of data. Pertinently, since a non-
Gaussian distribution can be modeled using a mixture of
Gaussian distributions, such impediments could be overcome.

The essential concept of our DPGM models is to represent a
non-Gaussian probability distribution as a mixture of multiple
Gaussian distributions. This implication can be stated mathe-
matically as follows:

p(x) =
k∑

j=1

π j N(x |θ j ) (1)

where x represents a time series collected by sensors from
the process, p(x) is its data distribution, and k is the number
of Gaussian components N(·) in the mixture, each of which
is modeled with weight π j and parameters θ j (mean μ j and
variance σ 2

j ). In reality, k may be unknown. We apply the DP
mixture model, which is a data-driven nonparametric Bayesian
approach to approximate a non-Gaussian distribution without
any a priori knowledge of k [11]. The procedure is broadly
elucidated in the forthcoming section.

1) Theoretical Development of DP Mixture Model: In DP,
the limit for the number of clusters k goes to infinity [32].
In other words, when k → ∞, the conditional prior distribu-
tion for the component indicators reaches its limit as follows:
p(ci = j |c−i , α)

∝

⎧
⎪⎨

⎪⎩

n−i, j

N − 1 + α
, if exsisting component j is chosen

α

N − 1 + α
, if a new component is created

(2)

where c = (c1, . . . , cN ) are the indicators of data points
for components, α is the concentration parameter, n j is the
number of data points in Gaussian component j , and N is
the number of data points, N = ∑k

j=1 n j . The subscript −i
indicates all indices except i , and similarly, n−i, j indicates
the number of observations in component j for all data points
except point i .

For each component indicator ci drawn conditioned
on all other component indicators from the multinomial
distribution, there is a corresponding component parameter θi

drawn from a base distribution G0. This result signifies
a DP mixture model, which can be used to model a set
of observations (x1, . . . , xi , . . . , xN ), with latent variables
of θ = (θ1, . . . , θ i , . . . , θN ) as follows:

G ∼ DP(α, G0)

θi ∼ G

xi ∼ N(·|θi) (3)

where DP(α, G0) is the DP with base distribution G0 and
concentration parameter α, G is a random discrete distribution
drawn from DP(α, G0), each θi is drawn from the discrete
distribution G, and each data point xi (which may include
statistical features, e.g., mean and variation, from the sensor
data) is drawn from a normal distribution with parameter θi .
Because the empirical distribution G is discrete, the same
values can be assigned to multiple θi . Data points that have the
same latent value belong to the same component [11], [32].

Furthermore, on integrating out G, the following conditional
distribution for θi is obtained [33]:

θi |θ−i , G0, α∼ α

N −1+α
G0+

N−1∑

j=1∪ j �=i

1

N −1+α
δ(θ j ) (4)

where δ(θ j ) is the Dirac delta function peaked on θ j .
Subsequently, combining the prior distribution for θi of data i
in (4) and the likelihood function in (3) results in the following
posterior distribution for Gaussian component parameters:
p(θ1 = j |θ−i , xi )

∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n−i, j

N − 1 + α
N(xi |θ j ), if existing component

j is chosen (a)
αq

N − 1 + α
H (θ |xi), if a new component is created (b)

(5)

where q = ∫
G0(θ)N(xi |θ)d(θ), H (θ |xi) = (G0(θ)N(xi |θ)/∫

G0(θ)N(xi |θ)d(θ)). Equation (5a) shows the probabilities
of θi having the same value with the existing Gaussian
component parameter θ j , and (5b) is the posterior probabil-
ity of θi choosing a new value that is randomly generated
from H (θ |xi).

2) Dirichlet-Process-Based Statistical Process Control
Chart: A control chart is a visual tool that is used for
monitoring whether a process or system at a given time
is under the influence of common cause (chance) variation
or special cause (assignable) variation [6], [7]. The limits
of the control charts represent thresholds that are obtained
when a system operates wholly under common cause variation
[in-control (IC) condition]. In the IC condition, the monitoring
statistic falls within the control limits threshold. If special
causes take effect, the control chart should presumably signal
a change in terms of the monitoring statistic drifting outside
the control limits [out-of-control (OOC) condition]. Thus, the
control chart is effectively a two-state or binary classifier as it
signals only IC or OOC process states. The control chart does
not identify, explicitly, the type of anomaly/special cause.

In DP-based SPC, the likelihood values of new data are
calculated under IC data distribution acquired by the DP mix-
ture model. Process changes are detected once the likelihood
values drop, indicating that such data are not likely generated
under IC condition. An effective way to detect the OOC
operation is by monitoring the average log-likelihood value in
a subgroup of incoming data under IC data distribution as in

1

w
log[L(x1, . . . , xi , . . . , xw|θ1, θ2, . . . , θ j )]

= 1

w

w∑

i=1

log

⎡

⎣
j∑

k=1

πkN(xi |θk)

⎤

⎦ (6)

where xi is the incoming data, j is the number of components
for mixture distribution for IC condition, and w is the subgroup
size of testing data. The larger the value of w, the more reliable
the detection of OOC operation, but a longer delay is caused
to detect process changes. Based on empirical results, we
choose w as the minimal number of observations to achieve
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the average run length (ARL0) for type I error of likelihood
values below a certain value, e.g., 0.05, in order to balance
fast detection and detecting accuracy.

By the central limit theorem, the average log-likelihood val-
ues of incoming data are approximately normally distributed.
Therefore, the problem of monitoring original complex non-
Gaussian data reduces to a scheme of monitoring normally
distributed average log-likelihood values. For simplicity, we
construct the DP-based SPC by closely emulating the frame-
work of the CUSUM chart with the average log-likelihood
values as the monitoring target. Therefore, representing the
average log-likelihood value in time epoch t as yt , we have
monitoring statistics for DP-based SPC

{
C+

t = max
[
0, yt − (μ0 + K ) + C+

t−1

]

C−
t = max

[
0, (μ0 − K ) − yt + C−

t−1

] (7)

with the control limits (threshold) for the chart set at

H = Lσ (8)

where σ and μ0 are the standard deviation and mean of
the sequential data yt under IC condition, respectively, the
parameters K and L are adjusted for a given average run length
criteria (ARL0) [7], and the average log-likelihood value yt is
obtained from (6). The CUSUMs C+

t and C−
t are tracked over

time; if these quantities are greater than H, then OOC status is
signaled. The CUSUMs C+

t and C−
t are never negative. The

implementation of DP-based SPC is introduced in Appendix I.
3) Application of DP-Based SPC for Process Monitoring—

Numerical Case Studies: In this section, we show that
DP-based SPC can capture changes in the data despite the
underlying distribution being asymmetric and multimodal.
We compare the results with two conventional control charts,
namely, EWMA and CUSUM [7]. The traditional control
charts monitor the raw data values, while the DP-based
SPC uses the average log-likelihood values in (6) within the
CUSUM framework in (7). For comparison purposes, we use
the following two average run length (ARL) criteria as widely
used for performance evaluation of control charts: 1) ARL0
and 2) ARL1 [7].

We now test the hypothesis that DP-based SPC has the
superior ability (i.e., smaller ARL1) in capturing the changes
in incoming data compared with EWMA and CUSUM given
identical ARL0. The following three scenarios are investigated.

• Case N1: Detecting mean shifts in univariate unimodal
Gaussian and non-Gaussian distributions.

• Case N2: Detecting mean shifts in univariate multimodal
non-Gaussian distributions.

• Case N3: Detecting shifts in multivariate, nonlinear,
and quasi-periodic data from the Rössler chaotic
attractor [34].

a) Case N1 (DP-based SPC for data from univariate uni-
modal Gaussian and non-Gaussian distributions): The aim of
this paper is to ascertain the ARL1 performance of DP-based
SPC toward detecting a shift in mean (location parameter) of a
distribution. Furthermore, we contrast the ARL1 performance
of DP-based SPC with those of EWMA and CUSUM control
charts.

Fig. 3. True PDF, Gaussian components, and approximated distribution
by DP mixture model for data generated from (a) N(μ, 1) and (b) χ2

1 .

Fig. 4. Case N1 results—OOC ARL1 values of different control charts when
ARL0 is fixed at 500 and actual IC data generated from (a) N(μ, 1) and
(b) χ2

1 . Scale on the y-axis is in natural logarithm.

This study is conducted with data generated from two basic
univariate distributions: the Gaussian distribution with mean μ
and variance 1, N(μ, 1); and the Chi-squared distribution with
one degree of freedom, χ2

1 . The mean of these distributions
will be shifted from the IC state of zero mean, and ARL1 will
be evaluated for CUSUM, EWMA, and DP-based SPC.

We note that the latter distribution (χ2
1 ) is inherently

asymmetric (right skewed) and theoretically equivalent to a
F distribution, F(1, ∞). Both the Gaussian and Chi-squared
probability density functions (PDF) are approximated by mix-
tures of Gaussian components using DP mixture model, as
exemplified in Fig. 3.

The OOC data are obtained by mean shift, ranging from
−1.0 to 1.0 with a step of 0.2. The control limit is acquired
by adjusting parameter L in (8) to obtain average ARL0
in 5000 repetitions at 500 under IC condition; the ARL1
values are reported based on 10 000 replications. The average
ARL1 results for EWMA, CUSUM, and DP-based SPC are
reported in Fig. 4. The following observations can be tendered
from Fig. 4.

1) Fig. 4(a): When the normality assumption is not vio-
lated, as the case with the Gaussian distribution N(μ, 1),
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Fig. 5. True PDF, Gaussian components, and fitted distribution by DP model
for data generated from a bimodal distribution consisting of N(10, 1) and χ2

1 .

CUSUM and EWMA perform better (lower ARL1) than
DP-based SPC.

2) Fig. 4(b): If the data are patently non-Gaussian, i.e., the
normality condition as in the case of χ2

1 is violated,
then the ARL1 of DP-based SPC is smaller than those
of EWMA and CUSUM control charts.

b) Case N2 (DP-based SPC for data from univariate
multimodal non-Gaussian distributions): In this case study,
the data are obtained from an underlying bimodal distribution
consisting of N(10, 1) and χ2

1 . As evident in Fig. 5, the
DP mixture model closely approximates the data distribution,
which corroborates our assertion that the DP mixture model
can capture complex distributions.

As in the previous case (Case N1), OOC data are obtained
by shifting the mean of the data in the range of −1.0 to 1.0
with a step of 0.2. Once again, the control limit is acquired
by adjusting parameter L in (8) to obtain average ARL0
of 5000 repetitions at 500 under IC condition, and ARL1
results from a 10 000-replication study are reported (Fig. 6).

It can be inferred from Fig. 6 that under a multimodal
distribution, and when the data are patently non-Gaussian
and asymmetric, the performance of EWMA and CUSUM is
considerably inferior to DP-based SPC; the ARL1 of DP-based
SPC is smaller than those of EWMA and CUSUM. Indeed,
the performance of the DP-based SPC is almost identical to
Fig. 4(b), thus further affirming that the DP-based SPC is not
influenced by symmetry and modes of the underlying data.

c) Case N3 (DP-based SPC for multivariate, nonlin-
ear, and quasi-periodic data): Real-world signals customarily
portray strong nonlinearity and high dimensionality; such a
behavior has been observed in several practical instances
in manufacturing processes, including CMP [22], [35], [36].
In this case study, we show that the DP mixture model
can accommodate multidimensional data depicting nonlinear
quasi-periodic dynamics [36].

The 3-D Rössler system, as delineated in (9), is used in
this case study [34]; it consists of three coupled ordinary
differential equations to define a continuous-time dynamical
system, which exhibits chaotic nonlinear behavior predicated
by the choice of three parameters, namely, a, b, and c in [34]

dx

dt
= −y(t) − z(t)

dy

dt
= x(t) + a · y(t)

dz

dt
= b + z(t) · [x(t) − c]. (9)

Fig. 6. Case N2 results—OOC ARL1 values of three SPC methods when
ARL0 is 500 and actual IC data are generated from a bimodal distribution
consisting of N(10, 1) and χ2

1 . The scale on the y-axis is in natural logarithm.

Fig. 7. (a) Rössler attractor delineated in (9). (b) Sample 1000 data points
from the Rössler attractor contaminated with white noise N(0, I3). (c) New
sample from the approximated distribution of the Rössler attractor.

We fix the parameters as follows: a = 0.2, b = 0.2,
and c = 5. The Rössler system depicts prominent chaotic
dynamics under these conditions; the dynamics of the Rössler
system has been extensively investigated in [34]. The Rössler
attractor state phase diagrams obtained as a result of (9) are
shown in Fig. 7(a). We note that in this simulation, data
generated from the Rössler system of (9) are purposely conta-
minated with Gaussian white noise N(0, σ 2I3), where I3 is the
identity matrix of order 3; the effect of variance σ 2 on ARL1 of
DP-based SPC is tested in this case study. Shown in Fig. 7(b)
is a sample of 1000 data points from the contaminated Rössler
attractor. Next, DP mixture model is used to approximate
the data distribution of Rössler contractor using a mixture
of multivariate Gaussian distributions. One thousand new data
points are generated from the DP approximated distribution
of the contaminated Rössler attractor, as shown in Fig. 7(c).
It is apparent from Fig. 7(c) that the data generated from the
DP approximated distribution closely resemble the data sam-
pled from the contaminated Rössler attractor [Fig. 7(b)]. The
Chi-square goodness of fit (GoF) test attests that there is no
significant difference between the actual and DP approximated
data in Fig. 7(b) and (c), respectively.

In order to detect the effects of mean and variance shifts,
OOC data are generated as follows [the IC state is the data
obtained from (9) with white noise N(0, I3)].

• for the mean shift case, OOC data are obtained by
translating the original data from (9) in all directions
(x(t), y(t), z(t)) in the range of 0.5–2.5 (step size 0.5);

• for variance shifts, the OOC data are obtained by conta-
minating original data with different levels of Gaussian
noise N(0, σ 2I3) with variance (σ 2) ranging from
1.5 to 4 (step size 0.5).

The ARL0 values of the multivariate extension of
EWMA (MEWMA), Hotelling’s T2 multivariate control chart,
and DP-based SPC are maintained at 500 to obtain the control
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Fig. 8. Case N3 results—OOC ARL1 values of three SPC methods when
IC ARL0 is 500. The scale on the y-axis is in natural logarithm. (a) ARL1
results for mean shifts. (b) ARL1 detection for data variation σ 2.

limit, and ARL1 is assessed [7]. We use Hotelling’s T2 instead
of CUSUM, because Hotelling’s T2 is easier to implement
than to extend CUSUM to the multivariate case, and it is also
considered one of the standard multivariate control charts [37].

As in previous cases (Cases N1 and N2), the ARL1 results
from 10 000 replications are reported for the three control
charts. The ARL1 results of the DP-based SPC are compared
with Hotelling’s T2 and MEWMA in Fig. 8. It can be inferred,
based on the evidence presented in Fig. 8, that the DP-based
SPC has significantly smaller ARL1, i.e., DP-based SPC is
able to detect data shifts and variability earlier than either of
the conventional control charts compared (Hotelling’s T2 and
MEWMA) for multivariate, nonlinear, and quasi-periodic data.

Note on Computational Time: For univariate data
(Cases N1 and N2), the computational time of DP-based SPC
is about 0.02 ms per data point and those of EWMA and
CUSUM are about 0.005 ms per data point; for the complex
multivariate data (Case N3), the computational time of
DP-based SPC is about 0.2 ms per data point and those of
MEWMA and Hotelling’s T2 are about 0.02 ms per data
point (with Intel Core i7-4770 CPU at 3.40 GHz). Although
DP-based SPC is slower than traditional SPC charts, it is
fast enough (∼50 kHz for 1-D data and ∼5 kHz for 3-D
multivariate data) to handle many manufacturing processes
(e.g., in CMP, the sampling frequency of vibration sensors
is ∼670 Hz), and it is superior in monitoring complex
signal data.

B. Recurrent Hierarchical Dirichlet Process for
Evolutionary Clustering of Process States

For complex manufacturing processes, each process state
manifests in unique signal distributions. A control chart cannot
classify the differences in process states because the control
limits are estimated based on the so-called IC state alone. In
order to identify the specific process anomalies (drifts), we
herewith propose RHDP clustering. And we demonstrate the
utility of the RHDP clustering via a simulation-based study.

1) Theoretical Development of RHDP Model: As noted
previously at the beginning of Section III, there are two

elements that are critical toward formulating the RHDP model,
namely, RDP model, and the HDP model. We will cover these
elements in the forthcoming sections and finally demonstrate
the development of the RHDP model.

a) Recurrent Dirichlet process model: The basic DP
modeling delineated in Section III-A assumes that data points
(x1, x2, . . . , xN ) are fully exchangeable. In other words, the
autocorrelation of the data is not accounted for in the
basic DP modeling. This assumption is not detrimental for
DP-based SPC, since the IC condition model does not rely
on the temporal order of IC data. However, it is critical
to overcome this exchangeability limitation for classifying
process states from sequential data.

Specifically, the exchangeability limitation can be sur-
mounted using the RDP model proposed in [30], which
divides time series data into contiguous sequential epochs
(windows); data points within the same epoch are assumed
to be exchangeable, while the temporal order is maintained
across epochs. Thus, the autocorrelation in consecutive epochs
is accounted for in the RDP model. In the implementation of
RDP, the incoming sensor data are divided using a sliding
window technique; the data inside a sliding window are an
epoch.

Furthermore, the time lag of two consecutive epochs is
controlled by arranging the data overlap between the two
windows. For instance, if the first epoch consists of a set
of data points (x1, x2, . . . , xN−1), then the second epoch will
consist of data points (x2, x3, . . . , xN ) using time lag of one.

In the RDP model, the data point xt
i at time epoch t is gener-

ated from a distribution with latent variable θ t
i . The conditional

distribution of θ t
i can be formulated using the information from

an immediately preceding epoch as follows [30]:

θ t
i

∣∣θ t−1· , θ t
1, . . . , θ

t
i−1, G0, α ∼

1

Nt−1+i − 1+α

⎡

⎣
∑

j∈J t−1∪J t

(
nt−1

· j + nt
−i, j

)
δ
(
φt

j

)+αG0

⎤

⎦

(10)

where θ t
i is the distribution parameter for data xt

i at time
epoch t , θ t−1· stands for distribution parameters for all data
at previous time epoch t − 1, φt

j is the distribution parameter
value of mixture component j at time epoch t , δ(φt

j ) is the
Dirac delta function peaked on φt

j , Nt−1 denotes the number

of data points at time epoch t − 1, nt−1
· j is the number of data

points associated with mixture component j at time epoch
t−1, nt

−i, j is the number of data points associated with mixture
component j at time epoch t with data point i excluded, and
J t includes all the unique mixture components at time epoch t .

In accordance with these conditions, in a given epoch t ,
an observation belonging to component j is proportional to
the number of observations in component j at that epoch t ,
plus the number of observations in component j at previous
epoch t − 1. Subsequently, the distribution parameters of a
particular epoch can be estimated by invoking the RDP model.
Component assignments are made using the Gibbs sampling
algorithm.
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Fig. 9. Possible evolutions of data distribution in a physical process.

b) Recurrent hierarchical Dirichlet process model:
Although we have estimated the data distribution at each time
epoch in a sequential manner using RDP, we have not yet
considered the evolution of distributions between time epochs.
For instance, during the physical process, as depicted in Fig. 9,
the following four possibilities exist:

1) the signals dynamics remain stationary (no change);
2) new components may emerge;
3) the parameters of mixture components may change over

time;
4) an existing component may die.

Therefore, to classify the process, it is essential to track the
evolution of mixture components between time epochs.

The concept of HDP, which is essentially a multiple-level
DP, as proposed in [31], could be adopted in this context.
Unlike with DP, in a two-level HDP model, the parent DP G0
is a random variable distributed with concentration parame-
ter γ and base distribution H . The so-called child DPs G′

j s
have concentration parameter α and base distribution G0.
Since G0 is discrete, the child DPs G′

j s share atoms (mixture
components) with each other. Data distributions parametrized
by G′

j s with the same atoms will have the similar Gaussian
components, and therefore could be clustered together [31].

In this way, clustering of data distributions can be achieved
by HDP. In order to monitor the evolution in RDP-formulated
data distributions between consecutive time epochs, we pro-
pose a novel approach, which integrates RDP with HDP, and
consequently term the resulting approach as RHDP.

Given a temporal data set, RHDP model could be
used to monitor the distribution evolution among multiple
sequential epochs, and subsequently, the time epochs with
similar distribution characteristics can be grouped/clustered
together [31], [38]. The RHDP model is formulated as

G0|γ ∼ DP(γ, H )

Gt |α ∼ DP(α, G0)

θ t
i

∣∣Gt ∼ Gt

xt
i

∣∣θ t
i ∼ N(·|θ t

i ) (11)

where xt
i for i = 1, . . . , Nt are observations in time epoch t

and N(·|θ t
i ) denotes the Gaussian component parameterized

by θ t
i , which is sampled from the child DP Gt .

Data in different epochs are modeled by using Gaussian
mixture distributions with parameters {θ t

1 . . . , θ t
Nt } sampled

from Gt . If the process is stationary, the parameters of the
mixture distribution would remain constant. However, if there

is a change in the underlying process, entailing a change in the
data distribution, the current data distribution will not suit the
new data, i.e., the existing parameters drawn from Gt will not
appropriately model the new data. Accordingly, new samples
for G0 will be drawn from the base function H of parent DP.

We can estimate marginal distributions of the mixture com-
ponent at two levels of DP by integrating out G0 and Gt . The
conditional distribution for θ t

i can be calculated by integrating
out Gt as follows:
θ t

i

∣∣θ t−1· , θ t
1, . . . , θ

t
i−1, G0, α ∼

1

Nt−1 + i−1+α

⎡

⎣
∑

j∈J t−1∪J t

(
nt−1

· j + nt−i, j

)
δ
(
φt

j

) + αG0

⎤

⎦

(12)

where φt
j represents the distribution parameter of the mixture

component j at time epoch t .
Although (12) appears to be exactly the same as (10), they

have one significant difference—note that in (12), G0 is not
fixed, but distributed as DP.

The subsequent step is to integrate out G0 to get the
conditional distribution for φt

j . Since G0 is distributed as DP,
it can be integrated out as follows:
φt

j

∣∣φt−1· , φt
1, . . . , φ

t
j−1, H, γ ∼

1

Mt−1 + j−1+γ

⎡

⎣
∑

l∈Lt−1∪Lt

(
mt−1

·l + mt− j,l

)
δ(τl) + γ H

⎤

⎦

(13)

where τl denotes a value drawn from base distribution H ,
Mt−1 is the number of all Gaussian components in epoch t−1,
mt−1

·l is the number of Gaussian components associated with
τl at time epoch t−1, mt

− j,l is the number of the Gaussian
components except components j associated with τl at time
epoch t , and Lt denotes the collection of samples drawn
from H at epoch t .

Subsequently, we obtain the posterior probability distribu-
tions for both the component values of DP G0 in (14) and its
child DP Gt in (15)

p
(
φt

j = l
∣∣φt−1· , φt

1, . . . , φ
t
j−1,

{
c
(
xt

i

)= j
}) ∼

{
(mt−1

·l + mt
− j,l)F

(
φt

j |τl
)
, if component l is chosen

γ sT
(
τ |φt

j

)
, if a new component is created

(14)

where s = ∫
H (τ )F(φt

j |τ )d(τ ), T (τ |φt
j ) = (H (τ )F(φt

j |τ )/∫
H (τ )F(φt

j |τ )d(τ )) and F(φt
j |τl) is the probability of φt

j
getting the value of τl , which can be represented by likelihood
of all data belonging to the component j in the mixture
distribution at epoch t (i.e., all data with indicator c(xt

i ) = j)

p
(
θ t

i = j
∣∣θ t−1· , θ t

1, . . . , θ
t
i−1, xt

i

) ∼
{(

n
t−1
· j + nt

−i, j

)
N

(
xt

i |θ t
j

)
, if component j is chosen

αq R(θ |xt
i ), if a new component is created

(15)
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Fig. 10. (a) Generated three-part data from different Gaussian mixture
distributions. (b) Average log-likelihood values of data in time epochs. Three
different shades indicate data from distributions D1, D2, and D3, and the
white areas between different parts of data are transition periods.

where q = ∫
G0(θ)N(xt

i |θ)d(θ), R(θ |xt
i ) = (G0(θ)N(xt

i |θ)/∫
G0(θ)N(xt

i |θ)d(θ)).
In (15), xt

i represents data observation i during time epoch t ,
θ t

i represents the distribution parameter for data xt
i at time

epoch t , and φt
j represents the j th atom value of child

DP Gt (i.e., the mixture component j at time epoch t). If the
base distributions H is Gaussian, i.e., it is conjugate with
distribution of observations, then the integrals in (14) and (15)
have analytical solutions.

RHDP could attain unsupervised clustering of process states
by monitoring the change of mixture components among time
epochs, i.e., the evolution of sequential data distributions.
RHDP clustering includes the following two major steps.

1) RDP modeling is used for sequential process data, which
are segregated into sliding windows. Gibbs sampling is
adopted to update the data distribution, and Pearson’s
Chi-square GoF test is used to evaluate the accuracy of
distribution modeling.

2) Cluster data of which the mixture distributions are from
the same realizations in HDP. The average log-likelihood
value of current data under previous distribution is
continuously calculated and monitored as follows:

1

w
log

[
L
(
xt

1, . . . , xt
i , . . . , xt

w

∣∣θ t−1
1 , θ t−1

2 , . . . , θ
t−1
j

)]

= 1

w

w∑

i=1

log

⎡

⎣
j∑

k=1

πkN
(
xt

i |θ t−1
k

)
⎤

⎦ (16)

where xt
i is the incoming data in epoch t and j is the

number of components in epoch t−1. If the average log-
likelihood values calculated as (16) remain stable and
without significant drop, it indicates that the data in these
consecutive windows have the similar distribution and,
therefore, could be clustering as one process state. This
is computationally amenable than tracking the change
of mixture components. The implementation of RHDP
clustering is introduced in Appendix II.

In this way, by tracking the evolution of mixture distrib-
utions at consecutive time epochs using the RHDP model,

TABLE I

F-SCORE RESULTS FOR DATA SERIES WITH THREE DISTRIBUTIONS —
COMPARISON OF RHDP CLUSTERING VERSUS MEAN SHIFT

(THE VALUES IN THE PARENTHESIS ARE

THE STANDARD DEVIATION)

process drifts in complex manufacturing processes, such as
semiconductor CMP, can be monitored and different process
states (e.g., different anomalies) can be identified. We demon-
strate this assertion herewith using a numerical example.

2) RHDP Clustering Analysis for Simulated Data in
Sequential Epochs: The aim of this case study is to demon-
strate the ability of the RHDP clustering to group non-
Gaussian nonstationary sequentially acquired time series data.
We show that using numerically generated data, the unsuper-
vised clustering technique of RHDP identifies specific process
states contingent on their data distributions.

As noted in the preceding section, we continuously monitor
the average log-likelihood values of new data as in (16). For
a stationary process, the data distribution does not change
over time, and therefore, the average log-likelihood values
remain stable. If the average log-likelihood values were to
change dramatically, it indicates that the current data are not
generated from the existing distribution but from a new one.
Therefore, all the time epochs preceding the change of log-
likelihood values are grouped into the same cluster, given their
distribution similarity. In addition, we note that a transition
period between two process states is inevitable, because the
RHDP model splits the data into time epochs (windows),
and consequently, some windows will contain data from two
temporally adjacent process states.

In this paper, we define the following three mixture dis-
tributions from which the data are sequentially generated
[Fig. 10(a)].

• D1: xt ∼ 0.5N(0, 0.2) + 0.5N(1.5, 1).
• D2: xt ∼ 0.2N(0, 0.5) + 0.8N(3, 0.5).
• D3: xt ∼ 0.5N(0, 0.5) + 0.5N(2, 0.7).

Referring to Fig. 10(a), it is observed that the data naturally
cluster into three parts, as shaded by different colors. The
corresponding average log-likelihood values as estimated using
RHDP are shown in Fig. 10(b). The unshaded parts indicate
the transition periods.

We report results from a ten-replication study and com-
pare the clustering results from RHDP with the mean
shift method [23], a frequently used unsupervised cluster-
ing method; mean shift uses the raw data as opposed to
utilizing average log-likelihood values by RHDP. Since the
labels of sequential data are known, in order to evaluate the
effectiveness of RHDP in terms of percentage of correctly
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clustering data, we use the F-score (precision and sensitivity)
as the evaluation metric [39]. The higher the F-score, the more
accurate the model is. The clustering results are presented
in Table I, and it is evident that RHDP clustering has both
higher precision and sensitivity compared with mean shift, and
consequently, the F-score for RHDP clustering is significantly
higher than mean shift (98% versus 85%). This is because
RHDP utilizes all the characteristics of data distribution to
compute average log-likelihood values [see (16)], while mean
shift uses only the average values of data.

Note on Computational Time: Due to continuous updates to
the distribution estimates on sequential data, the computational
time of RHDP clustering is about 1.3 ms per data point
(200-point window with a ten-point overlap is used in this
simulation) and that of mean shift is about 0.03 ms per data
point (with Intel Core i7-4770 CPU at 3.40 GHz). Still, the
computational time of RHDP clustering is fast enough (with a
sampling frequency of ∼700 Hz) for our application in CMP.

IV. APPLICATION OF DPGM MODELS FOR ONLINE

MONITORING OF CMP PROCESS

The aim of this section is to verify the effectiveness of the
proposed DPGM models in a practical advanced manufactur-
ing scenario, namely, for monitoring a semiconductor CMP
process [1], [40]. DPGM models will be used toward attaining
two specific goals in the context of CMP:

1) Detection of process anomalies using the DP-based SPC
as explained in Section III-A.

2) Identification of anomalies using RHDP clustering as
described in Section III-B.

A. Experimental Setup

CMP is a vital back-end-of-line process in semiconductor
manufacturing. Semiconductor wafer defects resulting from
CMP process drifts can lead to high yield losses [3]. It is
therefore desirable to ensure defect-free operation in CMP by
employing real-time in situ sensor-based process monitoring
approaches [1]. Various sensors, such as acoustic emission,
force, and vibration sensors, have been applied to CMP process
monitoring [1], [41]–[46]. Miniature wireless MEMS devices
are particularly attractive for in situ monitoring applications
due to their weight, and energy efficiency. MEMS vibration
sensors have been successfully used hitherto for model-based
monitoring, material removal rate estimation, and endpoint
detection in CMP process [45]–[47].

In this work, we use a Buehler Automet 250 benchtop
CMP apparatus for our experiments. Further details of the
setup and experimental outcomes are available in [1]. A triaxis
MEMS vibration sensor (ADXL 335) manufactured by Analog
Devices Inc. is mounted on the apparatus to collect sensor data.
The sensor signals are sampled at 670 Hz and transmitted
wirelessly to a desktop computer with a matching wireless
receiver unit. The CMP setup and wireless sensor network
are shown in Fig. 11(a) and (b). Blanket copper wafer disks
of �1.625 in (40.625 mm) are polished in a KOH-based
alkaline colloidal silica slurry medium, which has a constant
flow rate of 20 mL/min. Near-optical (arithmetic average

Fig. 11. (a) and (b) Buehler Automet 250 experimental CMP setup with
the integrated wireless sensor. (c) and (d) Near-specular CMP finished copper
wafers [1].

roughness, Sa∼5 nm) quality surface finish blanket copper
wafers are obtained by polishing with a priori identified
optimal processing conditions [Fig. 11(c) and (d)].

However, as described previously in Fig. 1, sensor
signals acquired from CMP process are complex; they may
violate normality and linearity conditions. Consequently,
traditional SPC and mean shift clustering approaches may
not lend toward detection of CMP process anomalies,
as demonstrated in the numerical case studies presented
in Section III.

B. CMP Experimental Tests and Case Studies

In our experimental tests, certain CMP process parameters
are deliberately changed to induce precisely controlled defects
on the semiconductor wafer (e.g., scratches on the wafer). The
following practical case studies are illustrated in this section.

1) Case E1: Changes in polishing load or downforce.
2) Case E2: Wear of the polishing pad.
3) Case E3: Sequential changes in processing conditions.

The first two of the above cases are instances where
DP-based SPC will be applied for detecting process anomalies;
the last case, Case E3, involves identification of specific
anomalies using RHDP clustering.

1) Case E1—Capturing Changes in CMP Polishing Load
(Downforce) With Data Slightly Violating Normal Assumption:
The polishing load is one of the most significant factors in
CMP and determines not only physical aspects, such as the
nature of tribological contact, but also key process output
variables, namely, material removal rate, within wafer nonuni-
formity, surface quality, etc. [3].

In this experiment, a change in polishing load (down-
force) is monitored based on acquired vibration sensor data.
As depicted in Fig. 12(a), after a low load (5 lb) is active for
the first half time, the load is suddenly increased to a high-
load (8 lb) condition. All other factors, namely, head speed
and base speed, are maintained constant at 60 and 150 r/min,
respectively. We acquire 4000 data points in total, amounting
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Fig. 12. (a) Representative vibration signal patterns obtained under changing
load conditions. (b) Comparison of ARL1 in changing load conditions.

TABLE II

COMPARISON OF ARL1 VALUES FOR TWO PREDEFINED PROCESS
ANOMALIES WITH TRADITIONAL SPC AND DP-BASED SPC.

THE UNITS ARE IN MILLISECONDS

to about 6 s of polishing, during which the change of load
occurs approximately midway. A visible prominent shift in
signal mean, as well as variation, is evident; the signal mean
and variation increase with an increase in downforce.

CUSUM, EWMA, and DP-based SPC are applied to the
same time series data, allowing us to compare their ARL1
results. The control limits are adjusted a priori to maintain
identical type I error probabilities (α-error) at 5%, where
this translates to an ARL0 of 200. The results from a
ten-replication study are presented in Fig. 12(b). Moreover, it
is observed that the CMP vibration data depart from Gaussian
distribution as indicated by the Anderson–Darling GoF test.
Depending on the severity (p-value) of the non-Gaussian
nature of the data distribution, the DP-based SPC charts are
faster (low ARL1) compared with the CUSUM and EWMA
charts. For instance, referring to Table II, the DP-based SPC
detects the change in polishing load within ∼21 ms (14 data
points) on average, whereas CUSUM and EWMA require
∼27 ms (18 data points).

2) Case E2—Capturing Wear of CMP Polishing Pad With
Data Severely Violating Normal Assumption: Degradation
of the polishing pad is caused by wear overtime, selection
of suboptimal process conditions, or improper postprocess
handling [1]. For instance, inadequate postprocess cleaning
allows the residual slurry to dry and coagulate on the pad.
In addition, some portions of the polishing pad may be sheared
away during polishing, thus exposing the underlying hard
layer. Such polishing pads are glazed, i.e., the fibers of the
polishing pad become entangled and lose the ability to retain
slurry abrasives [1]. Polishing with a glazed pad leads to deep
scratches and nonuniform wafer morphology [1].

The DP-based SPC aims to detect a degraded pad con-
dition. It is constructed by training the IC mixture distri-
bution with operational data using good pads, and is then
applied to monitor CMP runs. This is akin to building a
Phase I control chart based on an a priori IC process
state [7]. The degraded pad is treated as the shifted process
state.

Fig. 13. (a) Representative vibration signal patterns obtained for pad wear
experiments. (b) Comparison of ARL1 for pad wear.

Fig. 14. (a) Representative vibration signal patterns obtained for pad
degradation experiments. (b) Comparison of ARL1 for pad degradation.

In the case study, in order to verify the efficiency of
DP-based SPC in detecting a degraded pad, we combine data
from two experiments. The first half of the data (2000 data
points, ∼3 s) is obtained from an experiment where a new pad
is used, while the second half is gathered from an experiment
conducted with a glazed pad. DP-based SPC is compared
with CUSUM and EWMA in terms of detection of the pad
condition change.

Fig. 13(a) depicts the vibration time series data gathered
under the following CMP conditions: 8 lb contact load,
150 r/min base speed and 60 r/min head speed. We discern
from Fig. 13(a) that not only does the mean of the vibration
signal change but also the variance of the signal slightly
increases.

Moreover, compared with the previous in this instance,
the vibration signals are found to depart more severely from
Gaussian behavior. Therefore, DP-based SPC significantly
outperforms the other two methods; it detects the pad wear
earlier than CUSUM and two times quicker than EWMA
control charts. Referring to Table II, it is observed that the
DP-based SPC detects the change in pad wear within ∼47 ms
(31 data points) on average, whereas CUSUM requires ∼56 ms
(37 data points) and EWMA over 140 ms (99 data points).

In addition, another polishing experiment is conducted to
show the effectiveness of DP-based SPC in detecting signal
change with a mildly used pad (neither brand new nor glazed).
From Fig. 14(a), it is observed that there is a slight mean
shift of vibration signals after switching to the mildly used
pad. Comparing with the results in Fig. 13(b), the time of
detecting pad degradation by DP-based SPC increases to
∼65 ms (43 data points) on average and CUSUM increases to
∼71 ms (48 data points) on average. Yet, DP-based SPC still
outperforms EWMA and CUSUM.

The ARL1 results from the foregoing cases are summarized
in Table II. The following inferences can be obtained.

• If the IC data slightly deviate from Gaussian distrib-
uted as in Case E1, then DP-based SPC detects the
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Fig. 15. Vibration data time series for the multiple process states (Case E3),
including normal condition (C1), high load (C2), and low slurry (C3).

process anomalies nearly as quickly as EWMA and
CUSUM.

• If the normality or symmetry conditions for the data
distributions are violated severely as in Case E2,
then DP-based SPC significantly outperforms CUSUM
and EWMA.

These results agree closely with the implications from the
numerical studies discussed in Section III-A. It is observed
that the relative performance of DP-based SPC against tra-
ditional SPC drops with experimental data: while numerical
case studies are generated from highly non-Gaussian and/or
nonlinear systems (χ2

1 , bimodal data, or Rössler attractor),
the experimental data manifest a modicum of similarity to
Gaussian data [1], [21].

3) Case E3—Identifying Multiple Sequentially Occurring
CMP Process Anomalies Using RHDP Clustering: After hav-
ing demonstrated the utility of DP-based SPC for detecting
process anomalies in the last two cases, we now apply
the RHDP unsupervised evolutionary clustering approach
explained in Section III-B for identifying multiple sequentially
occurring faults in CMP. This is important from an application
standpoint for CMP process, since if the process is OOC, it
is valuable to know what type of anomaly is prevalent so that
the appropriate corrective action can be taken.

In this study, three different kinds of CMP process operating
conditions are sequentially activated during a single experi-
mental run are as follows.

• The normal condition (C1) occurs under nominally
optimal process conditions, viz., 5 lb polishing load,
150 r/min base speed, and 60 r/min head speed.

• Condition C2 occurs after 3 s of operation (∼2000 data
points), the polishing load is increased to 8 lb (the other
settings are maintained at constant) for 3 s.

• Condition C3 is when the slurry feed is low for 3 s
(2000 data points), while the polishing load is kept at 8 lb.

Vibration signal patterns acquired for this experiment are
presented in Fig. 15.

The comparison between the RHDP clustering and mean
shift methods is also based on F-score (precision and sensitiv-
ity) borrowed from classification. The results for Case E3,
presented in Table III, indicate that despite the continual
change in CMP operating conditions, RHDP clustering iden-
tifies the different process states with higher precision and
sensitivity compared with the conventional mean shift clus-
tering method. For our three process states, RHDP clustering
achieves an average F-score of 0.7923, which is about 10%
higher than the mean shift method. Moreover, the sampling

TABLE III

CLUSTERING RESULTS FOR MULTIPLE PROCESS STATES IN CMP
EXPERIMENT—COMPARISON OF RHDP CLUSTERING VERSUS

MEAN SHIFT (THE VALUES IN THE PARENTHESIS ARE

THE STANDARD DEVIATION)

frequency of RHDP clustering is ∼700 Hz, faster than the
sampling frequency of vibration sensors (∼670 Hz) in CMP
experiments.

V. CONCLUSION

In this paper, we devised DP-based SPC and RHDP unsu-
pervised clustering for sensor-based process monitoring by the
concept of DPGM modeling. We validated these approaches
using numerical simulations and real-world wireless vibration
signals acquired from an experimental CMP setup. Based on
these studies, it is evident that DP-based SPC and RHDP clus-
tering outperform traditional methods under conditions where
the sensor signal patterns are nonlinear and non-Gaussian.
Practical outcomes from this research are as follows.

1) DP-based SPC detects the onset of CMP process anom-
alies, such as changes in pad wear, within 50 ms of their
inception. In contrast, the traditional methods, such as
EWMA control chart, has a delay of over 140 ms.

2) RHDP clustering model classifies with about
80% fidelity (F-score) multiple sequential process
drifts; traditional mean shift clustering accounts for an
F-score under 70%.

Consequently, this paper addresses one of the significant
challenges for process monitoring in ultraprecision manufac-
turing applications. As part of our future research, we aim to
improve DPGM modeling in the following manner:

• increasing the accuracy of distribution approximation
using extracted features instead of raw data in DP model;

• improving the computational tractability of RHDP clus-
tering model for high-dimensional data by incorporating
dimension reduction techniques.

APPENDIX I
(IMPLEMENTATION OF DP-BASED SPC)

Step 1: Assign conjugate prior to parameter θi of Gaussian
component (mean μi and variance σ 2

i ) by G0 in DP

σ 2
i ∼ InverseWishart(S0, n0)

μi |σ 2
i ∼ Normal

(
μ0, k0σ

2
i

)

G0 = p(θi) = p(μi , σ
2
i )

where S0, n0, μ0, and k0 are hyperparameters.
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Step 2: Apply Gibbs sampling to acquire parameters of
each Gaussian component from posterior conditional
distributions in (5)

(θi = |θ−i , xi ) ∼ n−i, j N(xi |θ j )

N−1+α
+ αq H (θ |xi)

N−1+α
.

Step 3: Choose average log-likelihood values as monitor-
ing statistic and calculate the average log-likelihood
values yt for IC data under the trained mixture
distribution in (6)

yt = 1

w

w∑

i=1

log

⎡

⎣
j∑

k=1

πkN(xi |θk)

⎤

⎦.

Step 4: Establish the control limit of monitoring statistic
under the scheme of CUSUM and perform anomaly
detection.

APPENDIX II
(IMPLEMENTATION OF RHDP CLUSTERING)

Step 1: Initialize data distribution by using DP mixture
model on the initial window of data.

Step 2: Calculate the average log-likelihood value of data in
next window yt under current mixture distribution
in (16)

yt = 1

w

w∑

i=1

log

⎡

⎣
j∑

k=1

πkN
(
xt

i |θ t−1
k

)
⎤

⎦.

Step 3: Update the mixture distribution on next window of
data by using RDP in (15)
(
θ t

i = j
∣∣θ t−1· , θ t

1, . . . , θ
t
i−1, xt

i

)

∼ (
n

t−1
· j + nt

−i, j )N(xt
i

∣∣θ t
j

) + αq R
(
θ |xt

i

)
.

Step 4: Investigate whether consecutive mixture distributions
are from the same draws in HDP by detecting a drop
in average log-likelihood values.

Step 5: Cluster data sharing similar mixture distributions and
achieve different states identification.
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