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Abstract 
Assessment of progressive, nano-scale variation of surface morphology during ultraprecision 
manufacturing processes, such as fine-abrasive polishing of semiconductor wafers, is a challenging 
proposition owing to limitations with traditional surface quantifiers. We present an algebraic graph 
theoretic approach that uses graph topological invariants for quantification of ultraprecision surface 
morphology. The graph theoretic approach captures heterogeneous multi-scaled aspects of surface 
morphology from optical micrographs, and is therefore valuable for in situ real-time assessment of 
surface quality. Extensive experimental investigations with specular finished (Sa ~ 5 nm) blanket 
copper wafers from a chemical mechanical planarization (CMP) process suggest that the proposed 
method was able to quantify and track variations in surface morphology more effectively than 
statistical quantifiers reported in literature.  
 
Key Words: Surface morphology quantification, semiconductor wafer metrology, chemical mechanical 
polishing (CMP), copper CMP, graph theory, Fiedler number. 

1 Introduction 
Surface morphology is a critical determinant of functional integrity in ultraprecision components, 

such as X-ray mirrors, MEMS devices, semiconductor microchips, etc. (De Chiffre et al., 2003, De 
Chiffre et al., 2000, Peters et al., 2001, Jiang, 2012). Therefore, quantification of surfaces is essential 
to effectively track and control morphological modifications to surfaces in ultraprecision 
manufacturing processes (Jiang et al., 2007, Jiang, 2012). Traditional statistical parameters, such as 
arithmetic average roughness (Ra, Sa), root mean square roughness (Rq, Sq), and higher statistical 
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moments, e.g., skewness (Psk, Ssk) and kurtosis (Pku, Sku) are often incongruous for quantifying 
ultraprecision surfaces, which typically depict heterogeneous and interdependent morphological 
features (see Figure 1) each possessing an unique spatial distribution and scaling characteristic 
(Thomas, 1998). Evident in Figure 1(a) are morphological features, such as scratches, ridges, and pits 
present on a copper wafer. These features hinder the functional performance of a semiconductor 
device. The chemical mechanical planarization (CMP) process is used in the semiconductor industry 
to gradually eliminate these undesirable morphological features (see Figure 1(b)) and yields near-
specular surface finish on  copper wafers within 9 minutes of processing (Sa ~ 5 nm, Figure 1(c)). 
However, the measured conventional statistics, such as Sa, Sq, Sz (maximum height), as seen from 
Figure 1(d) do not track changes to surface morphology. Prior efforts have focused on using a 
multitude of statistical quantifiers to track surface variations, leading to the so called parameter rash 
(Whitehouse, 1982). For example, a parameter, e.g., Sa, essentially captures the aggregate intensity of 
the surface topography, while autocorrelation length (Sal) captures their distribution (Jiang, 2012). 
Parsimonious quantification of ultraprecision surface morphology is therefore a compelling challenge.  

Although ultraprecision surfaces may be quantified statistically, salient characteristics of the 
underlying topography, for instance, the connections between ridges and pits seen in Figure 1(b), 
termed as connectedness by Thomas (Thomas, 1998), are not forthcoming using traditional 
parameters. While fractal mapping and wavelet decomposition of surfaces have been proposed to 
quantify multi-scale aspects of surface morphology, these methods often entail estimation of statistics 
over several length scales, and are therefore computationally intensive and time-consuming (Jiang et 
al., 2007, Jiang et al., 2008). We show that these limitations can be overcome using an algebraic graph 
theoretic approach for quantifying ultraprecision surface morphology. The graph theoretic approach 
by representing the underlying topological relationships is capable of incorporating the effect of 
diverse morphological features without the need to sift through length scales (Chung, 1997, Fiedler, 
1973). 

The main contribution of this work is in the graph theoretic representation of ultraprecision 
surfaces, which allows topological invariants, such as Fiedler number to effectively quantify and track 
variations in surface morphology. Moreover, it is noted that characterization approaches used for 
ultraprecision metrology, e.g., laser interferometry (as in Figure 1(a)), scanning electron microscopy 
(SEM), atomic force microscopy (AFM), etc., can be slow, restricted to assessment of small local 
areas, cumbersome to implement for large parts, and oftentimes destructive; thus limiting their 
applicability for real-time in situ monitoring scenarios (Jiang, 2012). Existing studies of surface 
roughness measurement note the benefits of optical methods versus common stylus-based 
measurement (Sherrington and Smith, 1988b, Sherrington and Smith, 1988a, Shiraishi, 1989, 
Vorburger and Teague, 1981, Shiraishi, 1981). The most notable of which is the non-contact nature of 
optical measurement, as well as less measurement variation, due to the evaluation of an area of the 
surface instead of the line segment obtained by a stylus. Optical and image-based roughness 
measurement is therefore amenable for on-line monitoring of surface finish. The presented graph 
theoretic approach, by invoking optical micrographs for quantification of ultraprecision surface 
morphology, obviates these shortcomings. 

The rest of this work is organized as follows: the graph theoretic approach for quantification of 
ultraprecision surfaces is elucidated in detail in Sec. 2, the approach is validated using numerically 
generated surfaces, as well as experimentally acquired CMP wafers in Sec. 3 and Sec. 4, respectively, 
and finally the conclusions are summarized in Sec. 5. 
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Figure 1: The surface profile of a copper wafer obtained using a laser interferometer (a) before, and (b) after 
chemical-mechanical planarization (CMP) operations. (a): The surface profile prior to CMP operations shows 
heterogeneous features, such as scratches, ridges, pits, etc. (b): The surface profile after CMP shows significant 
improvement in surface morphology within 3 minutes of CMP operations. (c): Specular finish (Sa  5 nm) 
obtained on CMP processed blanket copper wafers. (d): The mean areal surface roughness (Sa) obtained over 3 
minute intervals of CMP for two replications fails to reflect these improvements in surface morphology.    

2 Graph-theoretic representation and quantification of surface 
morphology  

Algebraic graph theory approaches have been previously used to describe topological relationships 
in various physical domains (Shi and Malik, 2000, Von Luxburg, 2007). For example, the Eigen 
spectra of graphs is used for segmenting (partitioning) an image based on brightness, texture, and 
color of pixels (Shi and Malik, 2000). However, algebraic graph theoretic image processing 
techniques are primarily intended towards clustering or segmenting graphs reconstructed from images, 
which are inhomogeneous in appearance. In comparison, ultraprecision surfaces are typically 
homogenous, i.e., the various nanoscale morphological features are distributed uniformly over the 
surface. As we will elucidate herewith, the homogenous morphology of ultraprecision surfaces 
presents an opportunity for substantial reduction in computational effort.  

We now explain the two phased (Figure 2) approach used to realize graph theoretic representation 
and subsequent quantification of ultraprecision surface morphology from optical micrograph images. 
Before proceeding, we note that the efficacy of the presented approach is contingent on optical image 
quality. Therefore, the reliability of results are intrinsically tied to imaging conditions, such as focus, 
lighting, filtering, environmental aspects, etc. Accordingly, in our experiments, we take care to 
maintain consistent imaging conditions. Hence, for the CMP process (Sec. 4) we recorded the 3D 
profiles and optical images of copper wafer surfaces using a laser interferometer operating in the green 
light region (~ 550 nm wavelength) in order to minimize the effect of variability in lighting conditions. 

 
Figure 2: Overview of the methodology for graph theoretic quantification of ultraprecision surfaces. 
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2.1 Phase 1: Graph representation of optical images scanned using a 
laser interferometer 

Let  be the matrix representation of a  pixels optical micrograph. Due to homogeneity of 
feature distribution, each row of  may be treated to be the vertex (or node) of the undirected graph 

 with nodes (vertices)  and edges  (Chung, 1997).  For example, in Figure 3 each dot 
represents a node and each line an edge, with movement possible in either direction along an edge. 
Such a network graph representation of the surface allows quantification of the connectivity aspect 
among surface features as opposed to merely measuring their statistical characteristics.  

 
Figure 3: Illustration of an undirected network graph with dots representing nodes (vertices) and lines as edges. 

From the  rows (columns could also be used) of  we construct vectors , , 
which are row vectors of image pixel values. We compute pairwise comparison metrics  between 

 using a kernel function  (Shi and Malik, 2000).  
 (1) 

We note that these row-wise pixel comparisons are critical for facilitating analysis of 
homogeneous ultraprecision surfaces as they allow inclusion of features up to a length of  pixels (~ 
200 µm in our case) as opposed to only local (< 0.20 µm, ~ 1 pixel) scales; and consequently the 
computation complexity reduces from a bi-quadratic ( ) to quadratic ( ) number. 
Furthermore, if individual pixel comparisons were to be computed, the resulting graph representation 
would then be replete with several nodes and edges, and therefore occlude large-scale surface 
morphology variations. Next, we apply a threshold function  which converts  into binary form, 

   (2) 
The binary symmetric similarity matrix  enshrines the graph  with only those nodes 

satisfying the threshold condition set in Eqn. (2) being connected, i.e., if an edge exists between any 
two nodes  and   then  = 1, else  = 0. Essentially,  is a convolution of heterogeneous 
morphological aspects of the surface, such as nano-scratches, pits, and ridges. Therefore, the topology 
of  inculcates the effect of multi-scale features simultaneously without the need to sift through 
different length scales as typically required in wavelet decomposition and fractal mapping. The 
topology of the graph  is dependent on the nature of the kernel ( ) and threshold ( ) functions. In 
this work we use the following two kernel and threshold function pairs. 
Euclidean Kernel 

 
(3) 

where,     
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Radial Basis Kernel 

 

(4) ;  
 

 

where,   and where  is the standard deviation of the elements  in the 
Euclidean distance matrix . The threshold function  in Eqn. (2) is a heuristic, manually tuned 
entity. In the graph segmentation literature, researchers customarily select a hard threshold ( ) 
(Nascimento and De Carvalho, 2011, Shi and Malik, 2000, Von Luxburg, 2007, Schaeffer, 2007, 
Spielman, 2009, Newman, 2000). The threshold ( ) is used to make the similarity matrix S sparse and 
binary. This significantly reduces the computational complexity, particularly the eigen 
decompositions; to the best of our knowledge, there is no closed form solution that optimizes for .  

Furthermore,  is a Heaviside step function for which the threshold ( ) is set equal to the average 

of , i.e., , which relaxes the selection of the threshold, because, the threshold can be 
adaptively estimated contingent on the input image, as opposed to selecting a heuristically determined 
number. From a signal processing perspective, this relaxation of  is similar in spirit to the universal 
wavelet threshold proposed by Johnstone and Silverman (Johnstone and Silverman, 1997).  

We use this approach for setting the threshold  based on observations from extensive computer 
simulations (Rao, 2013, Rao et al., 2015 (To Appear)). We found that, if the threshold  was set such 
that it veered more than ~ 0.1 standard deviations from the mean of , the similarity matrix S often 
became defective (one or more rows in S become zero, i.e., signifying an isolated node(s)) or too 
dense (many edge connections). When the similarity matrix S becomes defective, the eigen 
decompositions required for this work (Eqns. (5) - (9)) cannot be computed. In the scenario where 
there are dense edge connections, the graph theoretic invariants failed to capture surface morphology 
variations. Hence, from our empirical knowledge, we selected the threshold  as the average of . 
This approach for determining  was borne in the light of multiple numerical and experimental 
studies, e.g., Sec. 3 and Sec.4, where we will show that subtle morphological variations can be 
captured based on this threshold (Rao, 2013).  

Our studies with different types of surfaces revealed that the Euclidean kernel is more suitable for 
binary (black and white) images, whereas the radial basis kernel is appropriate for gray scale images 
(Rao, 2013). This is because, the radial basis kernel is essentially a Gaussian filter which normalizes 
the gray scale texture of the micrograph, therefore  is bounded between (0,1]. In contrast, for the 
Euclidean kernel function,  is bounded between [0, ). Consequently, the radial basis kernel is 
robust to outliers. The emphasis of the subsequent section is to identify a parameter for quantifying the 
topology of the graph . Such quantifiers of network topology can be obtained from the Laplacian 
Eigen Spectrum of the graph  in the following manner (Chung, 1997, Fiedler, 1973, Mohar, 1991, 
Von Luxburg, 2007).  

2.2 Phase 2: Quantification of surface morphology using graph 
theoretic topological invariants 

We first compute the degree  of a node , which is a count of the number of edges that are 
incident upon the node, and obtain the diagonal degree matrix  structured from ,  

Ultraprecision Surface Morphology using an Algebraic Graph Theoretic Approach Rao et al.

16



 (5) 

 (6) 

Next, we define the volume  and the normalized Laplacian  of the graph , 

 (7) 

 . (8) 

 is analogous to Kirchhoff matrix encountered in electrical networks (Mohar, 1991). Thereafter, the 
eigen spectrum of  is computed as, 

 (9) 

We note,  is symmetric positive semi-definite, i.e., ,  its eigenvalues ( ) are non-negative, 
and bounded between 0 and 2, i.e., . The smallest non-zero eigenvalue ( ) is termed the 
Fiedler number and the corresponding eigenvector ( ) as the Fiedler vector (Chung, 1997, Fiedler, 
1973). The Fiedler number is related to Cheeger’s constant (also called isoperimetric number), 
which is a measure of edge connectivity of the network , by the following inequality (Chung, 1997, 
Fiedler, 1973). 

 (10) 

The graph theoretic topological invariants, Fiedler number ( ) and Cheeger’s constant ( ) are 
often used to quantify the resilience of the graph network to failures (Chung, 1997). Graphs with 
dense edge connections are typically robust to edge failures, i.e., many edges may have to be removed 
in order to isolate a node, and characteristically depict larger  and  values. In contrast, sparsely 
connected graphs are relatively easier to disrupt and have lower  and  values. This property is 
evident from the definition of  (see Ref. (Chung, 1997)). Consider a subset of nodes   
of the graph ; if  is the set of all nodes other than  in  and E (G ) 
represents the set of all edges in the graph  then, 

 
(11) 

 (12) 

Where  denotes all edges connecting  with . For example,  = 7 for the dashed edges 
in Figure 3 when the light colored node is the only node in . In essence,  accounts for the most 
sparsely connected node, the severing of whose connections will break the graph in two. From this 
definition it follows: when the density of edge connections is high,  and  will be larger (Fiedler, 
1973). From Eqn. (10) – (12), we note that the Fiedler number ( ) is not an ordinary statistical 
parameter, but is indeed physically related to the morphology of a surface. Thus, we have achieved a 
mapping,  whose properties are characterized using the Fielder number ( ).  

In the forthcoming sections, we will validate using numerically generated, as well as 
experimentally acquired CMP finished surfaces that the graph theoretic topological invariant Fiedler 
number ( ) can track surface morphology variations, which are not captured using traditional 
statistics-based parameters.  

 

Ultraprecision Surface Morphology using an Algebraic Graph Theoretic Approach Rao et al.

17



3 Studies with simulated surface topographies 
We now demonstrate the graph theoretic approach using two case studies invoking artificially 

generated surfaces. 

• Case 1 (Sec. 3.1): Examines whether the Fiedler number is capable of detecting changes in surface 
roughness.  

• Case 2 (Sec. 3.2): Investigates whether the Fiedler number can distinguish between different types 
of morphologies resembling surfaces obtained from polishing/fine abrasive finishing processes like 
CMP.  

3.1 Simulation of 3D Surface Profiles with Varying Surface Roughness 
In this study we generated 3D rough surfaces with known root mean square surface roughness 

(Sq). The surfaces have Gaussian distributed peak heights (Figure 4) and are obtained using an FFT-
based approach (Wu, 2000). The Sq is varied from 1 μm to 10 μm in integer steps of 1 μm, to emulate 
the typical surface roughness range of machining processes, such as turning, milling, shaping, etc. 
(DeGarmo et al., 2003, Sherrington and Smith, 1986); representative examples are shown in Figure 4. 
Given the inherent nature of the FFT algorithm used for surface generation (Wu, 2000), we note that 
average surface roughness (Sa) cannot be tightly controlled, however, the Sa is directly proportion to 
Sq, as exemplified in Figure 4. 

 
Figure 4: Three representative surfaces with underlying random Gaussian distribution with different surface 
roughness (Sq and Sa).  

In order to estimate the Fiedler number, the top view, akin to an optical image of the generated 
surfaces (Figure 4, bottom row) is used for analysis; viz., the input image  in Eqn. (1). For each of the 
10 levels of surface roughness, 42 surfaces and accompanying images are obtained, and subsequently 
analyzed using the Radial Basis Kernel function delineated in delineated in Eqn.(4). The resulting 
Fiedler number vs. surface roughness (Sq) trend is graphed in Figure 5. The Fiedler number increases 
with increase in surface roughness, however, the trend is not linear.  

Next, we verify whether the difference in (mean) Fiedler number is significant with respect to 
surface finish. For this purpose we used Tukey’s pairwise comparison test, the results from which are 
visually depicted in Figure 6 (Montgomery, 2008). Based on the Tukey test results, it reasonable to 
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conclude that the Fiedler number can detect changes in surface roughness with a resolution of ± 1 μm 
(Sq), however, the sensitivity of the approach is limited for finer surface finish ranges (1 μm ‒ 4 μm, 
Sq), where the resolution is of the order of ± 2 μm.  

 
Figure 5: Fiedler number vs. surface roughness (Sq) of artificially generated 3D surfaces. The error bars are ± 1 σ 
in length.  

 
Figure 6: The pair-wise differences using Tukey’s method with α = 1% level of significance. 1 indicates there is 
a statistically significant difference (p-val. < 0.01) in Fiedler number between two comparisons (different levels 
of ρ), 0 indicates that the Fiedler number was not statistically different. 

 

3.2 Simulation of Polished Surface Facets 
The aim of this numerical study is to show that the graph theoretic approach can distinguish 

different types of surface morphologies typically observed in a fine abrasive polishing process, such as 
CMP. To illustrate the viability of graph-based surface morphology quantification, we patterned the 
three distinct surface morphologies exemplified in Figure 7(a)-(c). Each of these morphologies has a 
distinctive type of feature (marked in white) whose density is uniformly set at 3% of total area. These 
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morphologies mimic some typical semiconductor wafer defects, namely, pitting (Type 1, Figure 7(a)), 
nanoscale scratch (Type 2, Figure 7(b)), and particle residue/corrosion (Type 3, Figure 7(c)). Fifty-two 
different instances were simulated for each of these defect types. In this case study, due to the binary 
nature of simulated surfaces we defined the edge weights using the Euclidean Kernel function (Eqn. 
(3)). 

Plots of the first two eigenvectors,  and  of   (corresponding to the non-zero eigenvalues  
and , respectively) for these synthetic surfaces are shown in Figure 7 (d)-(f) where we notice a 
significant difference in the eigenvector trajectories. The corresponding network graph (only 40 nodes 
are shown) and Fiedler statistics are plotted in Figure 7(g)-(i). Although the feature density was 
identical (3%) in all the three cases, the Fiedler numbers ( Figure 7(j)) are statistically (5% 
significance level) significantly different. Descriptive statistics concerning the Fiedler number ( ) for 
the three morphology types are shown in Table 1. 

 
Morphology 
type 

Mean 
Fiedler Number 

Std. dev. 
Fiedler Number 

Range 
Fiedler Number 

IQR 
Fiedler 
Number 

Type 1 0.8172 0.0061 0.0248 0.0084 
Type 2 0.7019 0.0461 0.1743 0.0715 
Type 3 0.6641 0.0237 0.1052 0.029 
Number of data points 52 (for each defect type), 156 total 
Pooled standard deviation 0.0301 
Standard error 0.0042 

Table 1: Descriptive statistics of the Fiedler number measured for different surface morphologies 

They were clustered around 0.82 for Type 1 and 0.65 for Type 3, with a statistically significant (p-
val. < 0.01) difference in mean Fiedler number for the three cases illustrated. In Type 1 (Figure 7(a)), 
the pairwise distances  are largely dissimilar (pixel rows look different from each other). Hence, 
for Type 1 surfaces,  (i.e., connected based on our definition) for a large number of nodes. 
Consequently, the similarity matrix , as well as the degree matrix  (Eqn. (5)) is not sparse for this 
case. This manifests in the rich interconnectivity between nodes seen in Figure 7(g). In contrast, for 
Type 3, and to a lesser degree for Type 2 surfaces (Figure 7(h) and (i), respectively), the network is 
well pruned, i.e.,  for many nodes. As a result, we recognize from Figure 7(h) and (i) that the 
nodes of the graph for Type 2, and particularly Type 3 surfaces, are not as well connected compared to 
Type 1. Hence, it is relatively easy to isolate a node for Type 2 and Type 3 surfaces in comparison to 
Type 1 surfaces. Therefore, from the definition of  in Eqn. (11), one expects the Fiedler number 
to be higher for Type 1 relative to Types 2 and 3. This case study illustrates that the Fiedler number is 
sensitive to variations in surface morphology, which are not captured using statistical parameters such 
as defect density. Nonetheless, the converse is not presumed, i.e., the simulated surface morphologies 
may have the same Fiedler number if the defect densities were allowed to vary. We now apply the 
graph theoretic approach for characterizing CMP processed blanket copper (Cu) wafers. 
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4 Application to CMP processed blanket copper wafers and 
validation using conventional surface roughness 
measurements   

Blanket copper wafers (dia. 40.625 mm) are CMP processed in three intervals, each lasting 3 
minutes, for realizing specular surface characteristics with Ra in the range of 5 – 10 nm (e.g., Figure 
8) (Rao et al., 2014). We recorded the surface profile (e.g., Figure 1(a) and (b)) and corresponding 
optical images at six randomly selected positions on the wafer after every 3 minutes of polishing. 

  
Figure 8: Blanket copper wafers with specular finish obtained after 9 minutes of CMP using 70 nm colloidal 
silica slurry. 

Surfaces shown in Figure 9(a1) and (b1), are representative optical images for a 3 minute and 9 
minute CMP processed wafer, respectively. The corresponding network graph obtained using the 
Euclidean kernel function (after conversion to black and white using a Canny filter (Canny, 1986)) 
from these optical images are shown in Figure 9(a2) and (a3), respectively.  Similarly, Figure 9 (b2) 
and (b3) show the network graphs obtained using the radial basis kernel. The mean Fiedler number 
( ) estimated from optical micrographs of Cu wafer surfaces across different polishing intervals using 
both Euclidean and radial basis kernels are shown in Figure 9 (c1) and (c2)) and also tabulated in 
Table 2. The mean Fiedler number is observed to reduce with progressive CMP stages. The difference 
in mean Fiedler number across CMP intervals was statistically significant at the 5% confidence level; 
except between 3 minutes and 6 minutes intervals for the radial basis function kernel. This is visually 
depicted in terms of the network graphs in Figure 9 (a2, b2) and (a3, b3), where there is a marked 
sparseness in edges going from 3 minute to 9 minute CMP stages, implying that some nodes can be 
easily isolated, and hence the Fiedler number is smaller for the 9 minute CMP stage.  

Furthermore, we compared these results with locally measured conventional statistics, such as Sa, 
Sq, Sz, feature density (obtained using a heuristically determined Canny filter (Canny, 1986)), and 
power spectral density (PSD) of the surface profile. After a CMP interval, conventional statistical 
parameters were estimated from a set of approximately 200 random sampled wafer locations at 
different areal scales. Some of these locally estimated statistics are shown in Figure 10(a)-(d) for 
samples measuring 25 µm × 25 µm. Estimation of local statistics in this manner requires sifting 
through several scale levels and is therefore computationally demanding. Estimation of local statistics 
in this manner necessitates sifting through several scale levels; it is computationally demanding and 
requires involved analysis, and hence it is not practically viable in a production scenario.  

 The correlation ρ between the Fiedler number and local estimates of conventional areal parameters 
(Table 3) was assessed to be the range of ~ 80% to 98%. This implies that the Fiedler number is 
sensitive to changes in surface morphology and depicts the same trend as locally estimated statistical 
parameters without requiring expensive computations stemming from sifting through length scales. 
For instance, estimating the local parameters shown in Figure 10 for a surface profile measurement 
(e.g., Figure 9(a)) required repeated computations over 20 areal scales starting from 100 µm × 100 µm 
and going to 5 µm × 5 µm. This expended approximately 20 minutes of computation for each CMP 
wafer. In contrast, the illustrated graph theoretic approach does not need such scale-based estimations; 
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2. The graph theoretic topological invariant, Fiedler number (λ2) was assessed to be a more effective 
quantifier of surface morphology in comparison to conventional defect count measurement. Three 
different defect distributions, with identical defect counts and bearing a close resemblance to 
actual CMP surfaces, were simulated (Sec. 3.2). The Fiedler numbers estimated for the three cases 
were significantly different (p-val < 0.01), indicating that the Fiedler number is more responsive 
to changes in surface morphology. 

3. The approach was verified against experimentally acquired CMP wafer surface micrographs and 
topography scans (obtained using a laser interferometer). We demonstrate that nanoscale aspects 
of CMP polished wafers, which were not adequately captured using conventional statistical 
metrology parameters, can be tracked using the graph theoretic invariant Fiedler number (λ2).  

4. We validated the estimated Fiedler number (λ2) obtained at different CMP stages by comparison 
with locally sampled conventional surface characterization parameters, such as Sa, Sq, Sz, PSD, 
and percentage defect count. The correlation coefficient ρ between conventional parameters and 
Fiedler number was estimated to be in the range of 75 – 98% for all combinations tested.  
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